TY - JOUR
T1 - The E3 ubiquitin ligase RNF40 suppresses apoptosis in colorectal cancer cells
AU - Schneider, Deborah
AU - Chua, Robert Lorenz
AU - Molitor, Nicole
AU - Hamdan, Feda H.
AU - Rettenmeier, Eva Maria
AU - Prokakis, Evangelos
AU - Mishra, Vivek Kumar
AU - Kari, Vijayalakshmi
AU - Wegwitz, Florian
AU - Johnsen, Steven A.
AU - Kosinsky, Robyn Laura
N1 - Funding Information:
This work was supported by institutional funding provided to the Department of General, Visceral and Pediatric Surgery by the University Medical Center Göttingen. R.L.K. is supported by the Dorothea Schlözer program (University of Göttingen), D.S. by the Jacob-Henle-Program (University of Göttingen), F.H.H. by the German Academic Exchange Service (DAAD), and E.M.R. by the German Research Foundation (DFG; return grant).
Funding Information:
We thank the members of the Transcriptome and Genome Analysis Laboratory (TAL) Göttingen for support in next-generation sequencing and S. Becker for performing FACS at the Cell Sorting Core Facility, Department of Hematology and Medical Oncology, University Medicine Göttingen, Göttin-gen. We are grateful to S. Rodewald for her help with the Celigo®-based apoptosis assay and V. Manzini for her assistance with the flow cytometry experiments. We acknowledge support by the Open Access Publication Funds of the Göttingen University.
Publisher Copyright:
© 2019 The Author(s).
PY - 2019/7/2
Y1 - 2019/7/2
N2 - Background: Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths worldwide, and deciphering underlying molecular mechanism is essential. The loss of monoubiquitinated histone H2B (H2Bub1) was correlated with poor prognosis of CRC patients and, accordingly, H2Bub1 was suggested as a tumor-suppressive mark. Surprisingly, our previous work revealed that the H2B ubiquitin ligase RING finger protein 40 (RNF40) might exert tumor-promoting functions. Here, we investigated the effect of RNF40 loss on tumorigenic features of CRC cells and their survival in vitro. Methods: We evaluated the effects of RNF40 depletion in several human CRC cell lines in vitro. To evaluate cell cycle progression, cells were stained with propidium iodide and analyzed by flow cytometry. In addition, to assess apoptosis rates, caspase 3/7 activity was assessed in a Celigo® S-based measurement and, additionally, an Annexin V assay was performed. Genomic occupancy of H2Bub1, H3K79me3, and H3K27ac was determined by chromatin immunoprecipitation. Transcriptome-wide effects of RNF40 loss were evaluated based on mRNA-seq results, qRT-PCR, and Western blot. To rescue apoptosis-related effects, cells were treated with Z-VAD-FMK. Results: Human CRC cell lines displayed decreased cell numbers in vitro after RNF40 depletion. While the differences in confluence were not mediated by changes in cell cycle progression, we discovered highly increased apoptosis rates after RNF40 knockdown due to elevated caspase 3/7 activity. This effect can be explained by reduced mRNA levels of anti-apoptotic and upregulation of pro-apoptotic BCL2 family members. Moreover, the direct occupancy of the RNF40-mediated H2B monoubiquitination was observed in the transcribed region of anti-apoptotic genes. Caspase inhibition by Z-VAD-FMK treatment rescued apoptosis in RNF40-depleted cells. However, knockdown cells still displayed decreased tumorigenic features despite the absence of apoptosis. Conclusions: Our findings reveal that RNF40 is essential for maintaining tumorigenic features of CRC cells in vitro by controlling the expression of genes encoding central apoptotic regulators.
AB - Background: Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths worldwide, and deciphering underlying molecular mechanism is essential. The loss of monoubiquitinated histone H2B (H2Bub1) was correlated with poor prognosis of CRC patients and, accordingly, H2Bub1 was suggested as a tumor-suppressive mark. Surprisingly, our previous work revealed that the H2B ubiquitin ligase RING finger protein 40 (RNF40) might exert tumor-promoting functions. Here, we investigated the effect of RNF40 loss on tumorigenic features of CRC cells and their survival in vitro. Methods: We evaluated the effects of RNF40 depletion in several human CRC cell lines in vitro. To evaluate cell cycle progression, cells were stained with propidium iodide and analyzed by flow cytometry. In addition, to assess apoptosis rates, caspase 3/7 activity was assessed in a Celigo® S-based measurement and, additionally, an Annexin V assay was performed. Genomic occupancy of H2Bub1, H3K79me3, and H3K27ac was determined by chromatin immunoprecipitation. Transcriptome-wide effects of RNF40 loss were evaluated based on mRNA-seq results, qRT-PCR, and Western blot. To rescue apoptosis-related effects, cells were treated with Z-VAD-FMK. Results: Human CRC cell lines displayed decreased cell numbers in vitro after RNF40 depletion. While the differences in confluence were not mediated by changes in cell cycle progression, we discovered highly increased apoptosis rates after RNF40 knockdown due to elevated caspase 3/7 activity. This effect can be explained by reduced mRNA levels of anti-apoptotic and upregulation of pro-apoptotic BCL2 family members. Moreover, the direct occupancy of the RNF40-mediated H2B monoubiquitination was observed in the transcribed region of anti-apoptotic genes. Caspase inhibition by Z-VAD-FMK treatment rescued apoptosis in RNF40-depleted cells. However, knockdown cells still displayed decreased tumorigenic features despite the absence of apoptosis. Conclusions: Our findings reveal that RNF40 is essential for maintaining tumorigenic features of CRC cells in vitro by controlling the expression of genes encoding central apoptotic regulators.
KW - Apoptosis
KW - Caspases
KW - Colorectal cancer
KW - H2Bub1
KW - RNF40
UR - http://www.scopus.com/inward/record.url?scp=85068580620&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068580620&partnerID=8YFLogxK
U2 - 10.1186/s13148-019-0698-x
DO - 10.1186/s13148-019-0698-x
M3 - Article
C2 - 31266541
AN - SCOPUS:85068580620
SN - 1868-7075
VL - 11
JO - Clinical Epigenetics
JF - Clinical Epigenetics
IS - 1
M1 - 98
ER -