The carboxyl-terminal domain of receptor-associated protein facilitates proper folding and trafficking of the very low density lipoprotein receptor by interaction with the three amino-terminal ligand-binding repeats of the receptor

Roger Savonen, Lynn M. Obermoeller, Julie S. Trausch-Azar, Alan L. Schwartz, Guojun Bu

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

The 39-kDa receptor-associated protein (RAP) is a specialized antagonist that inhibits all known ligand interactions with receptors that belong to the low density lipoprotein (LDL) receptor gene family. Recent studies have demonstrated a role for RAP as a molecular chaperone for the LDL receptor- related protein during receptor folding and trafficking within the early secretory pathway. In the present study, we investigated a potential role for RAP as a chaperone for the very low density lipoprotein (VLDL) receptor, another member of the LDL receptor gene family. Using intracellular crosslinking techniques, we found that RAP is associated with newly synthesized VLDL receptor. In the absence of RAP co-expression, newly synthesized VLDL receptor exhibited slower trafficking along the early secretory pathway, most likely due to misfolding of the receptor. The role of RAP in the folding of the VLDL receptor was further studied using an anchor- free, soluble VLDL receptor. Metabolic pulse-chase labeling experiments showed that while only 3% of the soluble VLDL receptor was folded and secreted in the absence of RAP co-expression, over 50% of the soluble receptor was secreted in the presence of RAP co-expression. The functions of RAP in VLDL receptor folding and trafficking were mediated by its carboxyl- terminal repeat but not by the amino-terminal and central repeats. Using truncated VLDL receptor constructs, we identified the RAP-binding site within the first three ligand-binding repeats of the VLDL receptor. Thus, our present study demonstrates that RAP serves as a folding and trafficking chaperone for the VLDL receptor via interactions of its carboxyl-terminal repeat with the three amino-terminal ligand-binding repeats of the VLDL receptor.

Original languageEnglish (US)
Pages (from-to)25877-25882
Number of pages6
JournalJournal of Biological Chemistry
Volume274
Issue number36
DOIs
StatePublished - Sep 3 1999

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'The carboxyl-terminal domain of receptor-associated protein facilitates proper folding and trafficking of the very low density lipoprotein receptor by interaction with the three amino-terminal ligand-binding repeats of the receptor'. Together they form a unique fingerprint.

Cite this