Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT

Panayiotis Korfiatis, Christina Kalogeropoulou, Anna Karahaliou, Alexandra Kazantzi, Spyros Skiadopoulos, Lena Costaridou

Research output: Contribution to journalArticle

55 Scopus citations

Abstract

Accurate and automated lung field (LF) segmentation in high-resolution computed tomography (HRCT) is highly challenged by the presence of pathologies affecting lung borders, also affecting the performance of computer-aided diagnosis (CAD) schemes. In this work, a two-dimensional LF segmentation algorithm adapted to interstitial pneumonia (IP) patterns is presented. The algorithm employs k -means clustering followed by a filling operation to obtain an initial LF order estimate. The final LF border is obtained by an iterative support vector machine neighborhood labeling of border pixels based on gray level and wavelet coefficient statistics features. A second feature set based on gray level averaging and gradient features was also investigated to evaluate its effect on segmentation performance of the proposed method. The proposed method is evaluated on a dataset of 22 HRCT cases spanning a range of IP patterns such as ground glass, reticular, and honeycombing. The accuracy of the method is assessed using area overlap and shape differentiation metrics ( dmean, drms, and dmax), by comparing automatically derived lung borders to manually traced ones, and further compared to a gray level thresholding-based (GLT-based) method. Accuracy of the methods evaluated is also compared to interobserver variability. The proposed method incorporating gray level and wavelet coefficient statistics demonstrated the highest segmentation accuracy, averaged over left and right LFs (overlap=0.954, dmean =1.080 mm, drms =1.407 mm, and dmax =4.944 mm), which is statistically significant (two-tailed student's t test for paired data, p<0.0083) with respect to all metrics considered as compared to the proposed method incorporating gray level averaging and gradient features (overlap=0.918, dmean =2.354 mm, drms =3.711 mm, and dmax =14.412 mm) and the GLT-based method (overlap=0.897, dmean =3.618 mm, drms =5.007 mm, and dmax =16.893 mm). The performance of the three segmentation methods, although decreased as IP pattern severity level (mild, moderate, and severe) was increased, did not demonstrate statistically significant difference (two-tailed student's t test for unpaired data, p>0.0167 for all metrics considered). Finally, the accuracy of the proposed method, based on gray level and wavelet coefficient statistics ranges within interobserver variability. The proposed segmentation method could be used as an initial stage of a CAD scheme for IP patterns.

Original languageEnglish (US)
Pages (from-to)5290-5302
Number of pages13
JournalMedical physics
Volume35
Issue number12
DOIs
StatePublished - 2008

Keywords

  • High-resolution computed tomography
  • Interstitial pneumonia
  • Lung segmentation
  • Support vector machine
  • Texture

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT'. Together they form a unique fingerprint.

  • Cite this

    Korfiatis, P., Kalogeropoulou, C., Karahaliou, A., Kazantzi, A., Skiadopoulos, S., & Costaridou, L. (2008). Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT. Medical physics, 35(12), 5290-5302. https://doi.org/10.1118/1.3003066