TY - JOUR
T1 - Target-enrichment sequencing and copy number evaluation in inherited polyneuropathy
AU - Wang, Wei
AU - Wang, Chen
AU - Brian Dawson, D.
AU - Thorland, Erik C.
AU - Lundquist, Patrick A.
AU - Eckloff, Bruce W.
AU - Wu, Yanhong
AU - Baheti, Saurabh
AU - Evans, Jared M.
AU - Scherer, Steven S.
AU - Dyck, Peter J.
AU - Klein, Christopher J.
N1 - Funding Information:
This study is supported by Center for Individualized Medicine and Department of Laboratory Medicine and Pathology of Mayo Clinic.
Publisher Copyright:
© 2016 American Academy of Neurology.
PY - 2016/5/10
Y1 - 2016/5/10
N2 - Objective: To assess the efficiency of target-enrichment next-generation sequencing (NGS) with copy number assessment in inherited neuropathy diagnosis. Methods: A 197 polyneuropathy gene panel was designed to assess for mutations in 93 patients with inherited or idiopathic neuropathy without known genetic cause. We applied our novel copy number variation algorithm on NGS data, and validated the identified copy number mutations using CytoScan (Affymetrix). Cost and efficacy of this targeted NGS approach was compared to earlier evaluations. Results: Average coverage depth was ∼760× (median 600, 99.4% > 100×). Among 93 patients, 18 mutations were identified in 17 cases (18%), including 3 copy number mutations: 2 PMP22 duplications and 1 MPZ duplication. The 2 patients with PMP22 duplication presented with bulbar and respiratory involvement and had absent extremity nerve conductions, leading to axonal diagnosis. Average onset age of these 17 patients was 25 years (2-61 years), vs 45 years for those without genetic discovery. Among those with onset age less than 40 years, the diagnostic yield of targeted NGS approach is high (27%) and cost savings is significant (∼20%). However, the cost savings for patients with late onset age and without family history is not demonstrated. Conclusions: Incorporating copy number analysis in target-enrichment NGS approach improved the efficiency of mutation discovery for chronic, inherited, progressive length-dependent polyneuropathy diagnosis. The new technology is facilitating a simplified genetic diagnostic algorithm utilizing targeted NGS, clinical phenotypes, age at onset, and family history to improve diagnosis efficiency. Our findings prompt a need for updating the current practice parameters and payer guidelines.
AB - Objective: To assess the efficiency of target-enrichment next-generation sequencing (NGS) with copy number assessment in inherited neuropathy diagnosis. Methods: A 197 polyneuropathy gene panel was designed to assess for mutations in 93 patients with inherited or idiopathic neuropathy without known genetic cause. We applied our novel copy number variation algorithm on NGS data, and validated the identified copy number mutations using CytoScan (Affymetrix). Cost and efficacy of this targeted NGS approach was compared to earlier evaluations. Results: Average coverage depth was ∼760× (median 600, 99.4% > 100×). Among 93 patients, 18 mutations were identified in 17 cases (18%), including 3 copy number mutations: 2 PMP22 duplications and 1 MPZ duplication. The 2 patients with PMP22 duplication presented with bulbar and respiratory involvement and had absent extremity nerve conductions, leading to axonal diagnosis. Average onset age of these 17 patients was 25 years (2-61 years), vs 45 years for those without genetic discovery. Among those with onset age less than 40 years, the diagnostic yield of targeted NGS approach is high (27%) and cost savings is significant (∼20%). However, the cost savings for patients with late onset age and without family history is not demonstrated. Conclusions: Incorporating copy number analysis in target-enrichment NGS approach improved the efficiency of mutation discovery for chronic, inherited, progressive length-dependent polyneuropathy diagnosis. The new technology is facilitating a simplified genetic diagnostic algorithm utilizing targeted NGS, clinical phenotypes, age at onset, and family history to improve diagnosis efficiency. Our findings prompt a need for updating the current practice parameters and payer guidelines.
UR - http://www.scopus.com/inward/record.url?scp=84978370397&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84978370397&partnerID=8YFLogxK
U2 - 10.1212/WNL.0000000000002659
DO - 10.1212/WNL.0000000000002659
M3 - Article
C2 - 27164712
AN - SCOPUS:84978370397
SN - 0028-3878
VL - 86
SP - 1762
EP - 1771
JO - Neurology
JF - Neurology
IS - 19
ER -