Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase

Lei Wang, Sita Kugel Desmoulin, Christina Cherian, Lisa Polin, Kathryn White, Juiwanna Kushner, Andreas Fulterer, Min Hwang Chang, Shermaine Mitchell-Ryan, Mark Stout, Michael F. Romero, Zhanjun Hou, Larry H. Matherly, Aleem Gangjee

Research output: Contribution to journalArticle

51 Scopus citations

Abstract

2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1-3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6- hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with l-glutamate diethyl ester, followed by saponification, afforded 1-3. Compound 3 selectively inhibited the proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including KB and IGROV1 human tumor cells, much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1-, 2-, and 4-atom bridge lengths for the activity of this series.

Original languageEnglish (US)
Pages (from-to)7150-7164
Number of pages15
JournalJournal of Medicinal Chemistry
Volume54
Issue number20
DOIs
StatePublished - Oct 27 2011

ASJC Scopus subject areas

  • Molecular Medicine
  • Drug Discovery

Fingerprint Dive into the research topics of 'Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase'. Together they form a unique fingerprint.

  • Cite this