Synergistic activity of the proteasome inhibitor PS-341 with non-myeloablative 153-Sm-EDTMP skeletally targeted radiotherapy in an orthotopic model of multiple myeloma

Apollina Goel, Angela Dispenzieri, Susan M. Geyer, Suzanne Greiner, Kah-Whye Peng, Stephen J Russell

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Multiple myeloma is a highly radiosensitive skeletal malignancy, but bone-seeking radionuclides have not yet found their place in disease management. We previously reported that the proteasome inhibitor PS-341 selectively sensitizes myeloma cells to the lethal effects of ionizing radiation. To extend these observations to an in vivo model, we combined PS-341 with the bone-seeking radionuclide 153-Sm-EDTMP. In vitro clonogenic assays demonstrated synergistic killing ofmyelomacells exposed to both PS-341 and 153-Sm-EDTMP. Using the orthotopic, syngeneic 5TGM1 myeloma model, the median survivals of mice treated with saline, 2 doses of PS-341 (0.5 mg/kg), or a single nonmyeloablative dose of 153-Sm-EDTMP (22.5 MBq) were 21, 22, and 28 days, respectively. Incontrast, mice treated with combination therapy comprising 2 doses of PS-341 (0.5 mg/kg), 1 day prior to and 1 day following 153-Sm-EDTMP (22.5 MBq) showed a significantly prolonged median survival of 49 days (P < .001). In addition to prolonged survival, this treatment combination yielded reduced clonogenicity of bone marrow-resident 5TGM1 cells, reduced serum myeloma-associated paraprotein levels,and better preservation of bone mineral density. Myelosuppression, determined by peripheral blood cell counts and clonogenicity assays of hematopoietic progenitors, did not differ between animals treated with 153-Sm-EDTMP alone versus those treated with the combination of PS-341 plus 153-Sm-EDTMP. PS-341 is a potent, selective in vivo radiosensitizer that may substantially affect the efficacy of skeletal-targeted radiotherapy in multiple myeloma.

Original languageEnglish (US)
Pages (from-to)4063-4070
Number of pages8
JournalBlood
Volume107
Issue number10
DOIs
StatePublished - May 15 2006

Fingerprint

Proteasome Inhibitors
Radiotherapy
Multiple Myeloma
Bone
Radioisotopes
Assays
Paraproteins
Bone and Bones
Blood Cell Count
Ionizing radiation
Disease Management
Ionizing Radiation
Bortezomib
samarium ethylenediaminetetramethylenephosphonate
Bone Density
Minerals
Animals
Blood
Bone Marrow
Cells

ASJC Scopus subject areas

  • Hematology

Cite this

Synergistic activity of the proteasome inhibitor PS-341 with non-myeloablative 153-Sm-EDTMP skeletally targeted radiotherapy in an orthotopic model of multiple myeloma. / Goel, Apollina; Dispenzieri, Angela; Geyer, Susan M.; Greiner, Suzanne; Peng, Kah-Whye; Russell, Stephen J.

In: Blood, Vol. 107, No. 10, 15.05.2006, p. 4063-4070.

Research output: Contribution to journalArticle

@article{28d47821fca94e7d85d68fbf641927fc,
title = "Synergistic activity of the proteasome inhibitor PS-341 with non-myeloablative 153-Sm-EDTMP skeletally targeted radiotherapy in an orthotopic model of multiple myeloma",
abstract = "Multiple myeloma is a highly radiosensitive skeletal malignancy, but bone-seeking radionuclides have not yet found their place in disease management. We previously reported that the proteasome inhibitor PS-341 selectively sensitizes myeloma cells to the lethal effects of ionizing radiation. To extend these observations to an in vivo model, we combined PS-341 with the bone-seeking radionuclide 153-Sm-EDTMP. In vitro clonogenic assays demonstrated synergistic killing ofmyelomacells exposed to both PS-341 and 153-Sm-EDTMP. Using the orthotopic, syngeneic 5TGM1 myeloma model, the median survivals of mice treated with saline, 2 doses of PS-341 (0.5 mg/kg), or a single nonmyeloablative dose of 153-Sm-EDTMP (22.5 MBq) were 21, 22, and 28 days, respectively. Incontrast, mice treated with combination therapy comprising 2 doses of PS-341 (0.5 mg/kg), 1 day prior to and 1 day following 153-Sm-EDTMP (22.5 MBq) showed a significantly prolonged median survival of 49 days (P < .001). In addition to prolonged survival, this treatment combination yielded reduced clonogenicity of bone marrow-resident 5TGM1 cells, reduced serum myeloma-associated paraprotein levels,and better preservation of bone mineral density. Myelosuppression, determined by peripheral blood cell counts and clonogenicity assays of hematopoietic progenitors, did not differ between animals treated with 153-Sm-EDTMP alone versus those treated with the combination of PS-341 plus 153-Sm-EDTMP. PS-341 is a potent, selective in vivo radiosensitizer that may substantially affect the efficacy of skeletal-targeted radiotherapy in multiple myeloma.",
author = "Apollina Goel and Angela Dispenzieri and Geyer, {Susan M.} and Suzanne Greiner and Kah-Whye Peng and Russell, {Stephen J}",
year = "2006",
month = "5",
day = "15",
doi = "10.1182/blood-2005-09-3870",
language = "English (US)",
volume = "107",
pages = "4063--4070",
journal = "Blood",
issn = "0006-4971",
publisher = "American Society of Hematology",
number = "10",

}

TY - JOUR

T1 - Synergistic activity of the proteasome inhibitor PS-341 with non-myeloablative 153-Sm-EDTMP skeletally targeted radiotherapy in an orthotopic model of multiple myeloma

AU - Goel, Apollina

AU - Dispenzieri, Angela

AU - Geyer, Susan M.

AU - Greiner, Suzanne

AU - Peng, Kah-Whye

AU - Russell, Stephen J

PY - 2006/5/15

Y1 - 2006/5/15

N2 - Multiple myeloma is a highly radiosensitive skeletal malignancy, but bone-seeking radionuclides have not yet found their place in disease management. We previously reported that the proteasome inhibitor PS-341 selectively sensitizes myeloma cells to the lethal effects of ionizing radiation. To extend these observations to an in vivo model, we combined PS-341 with the bone-seeking radionuclide 153-Sm-EDTMP. In vitro clonogenic assays demonstrated synergistic killing ofmyelomacells exposed to both PS-341 and 153-Sm-EDTMP. Using the orthotopic, syngeneic 5TGM1 myeloma model, the median survivals of mice treated with saline, 2 doses of PS-341 (0.5 mg/kg), or a single nonmyeloablative dose of 153-Sm-EDTMP (22.5 MBq) were 21, 22, and 28 days, respectively. Incontrast, mice treated with combination therapy comprising 2 doses of PS-341 (0.5 mg/kg), 1 day prior to and 1 day following 153-Sm-EDTMP (22.5 MBq) showed a significantly prolonged median survival of 49 days (P < .001). In addition to prolonged survival, this treatment combination yielded reduced clonogenicity of bone marrow-resident 5TGM1 cells, reduced serum myeloma-associated paraprotein levels,and better preservation of bone mineral density. Myelosuppression, determined by peripheral blood cell counts and clonogenicity assays of hematopoietic progenitors, did not differ between animals treated with 153-Sm-EDTMP alone versus those treated with the combination of PS-341 plus 153-Sm-EDTMP. PS-341 is a potent, selective in vivo radiosensitizer that may substantially affect the efficacy of skeletal-targeted radiotherapy in multiple myeloma.

AB - Multiple myeloma is a highly radiosensitive skeletal malignancy, but bone-seeking radionuclides have not yet found their place in disease management. We previously reported that the proteasome inhibitor PS-341 selectively sensitizes myeloma cells to the lethal effects of ionizing radiation. To extend these observations to an in vivo model, we combined PS-341 with the bone-seeking radionuclide 153-Sm-EDTMP. In vitro clonogenic assays demonstrated synergistic killing ofmyelomacells exposed to both PS-341 and 153-Sm-EDTMP. Using the orthotopic, syngeneic 5TGM1 myeloma model, the median survivals of mice treated with saline, 2 doses of PS-341 (0.5 mg/kg), or a single nonmyeloablative dose of 153-Sm-EDTMP (22.5 MBq) were 21, 22, and 28 days, respectively. Incontrast, mice treated with combination therapy comprising 2 doses of PS-341 (0.5 mg/kg), 1 day prior to and 1 day following 153-Sm-EDTMP (22.5 MBq) showed a significantly prolonged median survival of 49 days (P < .001). In addition to prolonged survival, this treatment combination yielded reduced clonogenicity of bone marrow-resident 5TGM1 cells, reduced serum myeloma-associated paraprotein levels,and better preservation of bone mineral density. Myelosuppression, determined by peripheral blood cell counts and clonogenicity assays of hematopoietic progenitors, did not differ between animals treated with 153-Sm-EDTMP alone versus those treated with the combination of PS-341 plus 153-Sm-EDTMP. PS-341 is a potent, selective in vivo radiosensitizer that may substantially affect the efficacy of skeletal-targeted radiotherapy in multiple myeloma.

UR - http://www.scopus.com/inward/record.url?scp=33646596927&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646596927&partnerID=8YFLogxK

U2 - 10.1182/blood-2005-09-3870

DO - 10.1182/blood-2005-09-3870

M3 - Article

C2 - 16424391

AN - SCOPUS:33646596927

VL - 107

SP - 4063

EP - 4070

JO - Blood

JF - Blood

SN - 0006-4971

IS - 10

ER -