Suppression-Replacement KCNQ1 Gene Therapy for Type 1 Long QT Syndrome

Steven M. Dotzler, C. S.John Kim, William A.C. Gendron, Wei Zhou, Ye Dan Ye, J. Martijn Bos, David J. Tester, Michael A. Barry, Michael J. Ackerman

Research output: Contribution to journalArticlepeer-review

Abstract

BACKGROUND: Type 1 long QT syndrome (LQT1) is caused by loss-of-function variants in the KCNQ1-encoded Kv7.1 potassium channel α-subunit that is essential for cardiac repolarization, providing the slow delayed rectifier current. No current therapies target the molecular cause of LQT1. METHODS: A dual-component suppression-and-replacement (SupRep) KCNQ1 gene therapy was created by cloning a KCNQ1 short hairpin RNA and a short hairpin RNA-immune KCNQ1 cDNA modified with synonymous variants in the short hairpin RNA target site, into a single construct. The ability of KCNQ1-SupRep gene therapy to suppress and replace LQT1-causative variants in KCNQ1 was evaluated by means of heterologous expression in TSA201 cells. For a human in vitro cardiac model, induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) were generated from 4 patients with LQT1 (KCNQ1-Y171X, -V254M, -I567S, and -A344A/spl) and an unrelated healthy control. CRISPRCas9 corrected isogenic control iPSC-CMs were made for 2 LQT1 lines (correction of KCNQ1-V254M and KCNQ1-A344A/spl). FluoVolt voltage dye was used to measure the cardiac action potential duration (APD) in iPSC-CMs treated with KCNQ1-SupRep. RESULTS: In TSA201 cells, KCNQ1-SupRep achieved mutation-independent suppression of wild-type KCNQ1 and 3 LQT1-causative variants (KCNQ1-Y171X, -V254M, and -I567S) with simultaneous replacement of short hairpin RNA-immune KCNQ1 as measured by allele-specific quantitative reverse transcription polymerase chain reaction and Western blot. Using FluoVolt voltage dye to measure the cardiac APD in the 4 LQT1 patient-derived iPSC-CMs, treatment with KCNQ1-SupRep resulted in shortening of the pathologically prolonged APD at both 90% and 50% repolarization, resulting in APD values similar to those of the 2 isogenic controls. CONCLUSIONS: This study provides the first proof-of-principle gene therapy for complete correction of long QT syndrome. As a dual-component gene therapy vector, KCNQ1-SupRep successfully suppressed and replaced KCNQ1 to normal wild-type levels. In TSA201 cells, cotransfection of LQT1-causative variants and KCNQ1-SupRep caused mutation-independent suppression and replacement of KCNQ1. In LQT1 iPSC-CMs, KCNQ1-SupRep gene therapy shortened the APD, thereby eliminating the pathognomonic feature of LQT1.

Original languageEnglish (US)
Pages (from-to)1411-1425
Number of pages15
JournalCirculation
Volume143
Issue number14
DOIs
StatePublished - Apr 6 2021

Keywords

  • KCNQ1 protein
  • genetic therapy
  • human
  • induced pluripotent stem cells
  • long QT syndrome

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Suppression-Replacement KCNQ1 Gene Therapy for Type 1 Long QT Syndrome'. Together they form a unique fingerprint.

Cite this