13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin

M. D. Kemple, P. Yuan, K. E. Nollet, J. A. Fuchs, N. Silva, F. G. Prendergast

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

The rotational motion of tryptophan side chains in oxidized and reduced wild-type (WT) Escherichia coli thioredoxin and in two single-tryptophan variants of E. coli thioredoxin was studied in solution in the temperature range 20–50 degrees C from 13C-NMR relaxation rate measurements at 75.4 and 125.7 MHz and at 20 degrees C from steady-state and time-resolved trp fluorescence anisotropy measurements. Tryptophan enriched with 13C at the delta 1 and epsilon 3 sites of the indole ring was incorporated into WT thioredoxin and into two single-trp mutants, W31F and W28F, in which trp-28 or trp-31 of WT thioredoxin was replaced, respectively, with phenylalanine. The NMR relaxation data were interpreted using the Lipari and Szabo "model-free" approach (G. Lipari and A. Szabo. 1982. J. Amer. Chem. Soc. 104:4546–4559) with trp steady-state anisotropy data included for the variants at 20 degrees C. Values for the correlation time for the overall rotational motion (tau m) from NMR of oxidized and reduced WT thioredoxin at 35 degrees C agree well with those given by Stone et al. (Stone, M. J., K. Chandrasekhar, A. Holmgren, P. E. Wright, and H. J. Dyson. 1993. Biochemistry. 32:426–435) from 15N NMR relaxation rates, and the dependence of tau m on viscosity and temperature was in accord with the Stokes-Einstein relationship. Order parameters (S2) near 1 were obtained for the trp side chains in the WT proteins even at 50 degrees C. A slight increase in the amplitude of motion (decrease in S2) of trp-31, which is near the protein surface, but not of trp-28, which is partially buried in the protein matrix, was observed in reduced relative to oxidized WT thioredoxin. For trp-28 in W31F, order parameters near 1 (S2 > or = 0.8) at 20 degrees C were found, whereas trp-31 in W28F yielded the smallest order parameters (S2 approximately 0.6) of any of the cases. Analysis of time-resolved anisotropy decays in W28F and W31F yielded S2 values in good agreement with NMR, but gave tau m values about 60% smaller. Generally, values of tau e, the effective correlation time for the internal motion, were < or = 60 ps from NMR, whereas somewhat longer times were obtained from fluorescence. The ability of NMR and fluorescence techniques to detect subnanosecond motions in proteins reliably is examined.

Original languageEnglish (US)
Pages (from-to)2111-2126
Number of pages16
JournalBiophysical Journal
Volume66
Issue number6
DOIs
StatePublished - 1994

ASJC Scopus subject areas

  • Biophysics

Fingerprint

Dive into the research topics of '13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin'. Together they form a unique fingerprint.

Cite this