Substrate oxidation and cardiac performance during exercise in disorders of long chain fatty acid oxidation

Annie M. Behrend, Cary O. Harding, James D. Shoemaker, Dietrich Matern, David J. Sahn, Diane L. Elliot, Melanie B. Gillingham

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Background: The use of long-chain fatty acids (LCFAs) for energy is inhibited in inherited disorders of long-chain fatty acid oxidation (FAO). Increased energy demands during exercise can lead to cardiomyopathy and rhabdomyolysis. Medium-chain triglycerides (MCTs) bypass the block in long-chain FAO and may provide an alternative energy substrate to exercising muscle. Objectives: To determine the influence of isocaloric MCT versus carbohydrate (CHO) supplementation prior to exercise on substrate oxidation and cardiac workload in participants with carnitine palmitoyltransferase 2 (CPT2), very long-chain acyl-CoA dehydrogenase (VLCAD) and long-chain 3-hydroxyacyl CoA dehydrogenase (LCHAD) deficiencies. Design: Eleven subjects completed two 45-minute, moderate intensity, treadmill exercise studies in a randomized crossover design. An isocaloric oral dose of CHO or MCT-oil was administered prior to exercise; hemodynamic and metabolic indices were assessed during exertion. Results: When exercise was pretreated with MCT, respiratory exchange ratio (RER), steady state heart rate and generation of glycolytic intermediates significantly decreased while circulating ketone bodies significantly increased. Conclusions: MCT supplementation prior to exercise increases the oxidation of medium chain fats, decreases the oxidation of glucose and acutely lowers cardiac workload during exercise for the same amount of work performed when compared with CHO pre-supplementation. We propose that MCT may expand the usable energy supply, particularly in the form of ketone bodies, and improve the oxidative capacity of the heart in this population.

Original languageEnglish (US)
Pages (from-to)110-115
Number of pages6
JournalMolecular genetics and metabolism
Volume105
Issue number1
DOIs
StatePublished - Jan 2012

Keywords

  • Exercise
  • Fatty acid oxidation disorders
  • MCT
  • Nutrition

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Biology
  • Genetics
  • Endocrinology

Fingerprint

Dive into the research topics of 'Substrate oxidation and cardiac performance during exercise in disorders of long chain fatty acid oxidation'. Together they form a unique fingerprint.

Cite this