Abstract
PAPP-A (pregnancy-associated plasma protein-A) is produced by hSFs (human skin fibroblasts) and hOBs (human osteoblasts) and enhances the mitogenic activity of IGFs (insulin-like growth factors) by degradation of IGFBP-4 (insulin-like growth factor-binding protein 4). PKC (protein kinase C) activation in these cells led to reduction in IGFBP-4 proteolysis. This study was undertaken to determine the mechanism by which activation of PKC suppresses IGFBP-4 proteolysis. Treatment of hSFs/hOBs with TPA (PMA; 100 nM) reduced IGFBP-4 proteolysis without significantly decreasing the PAPP-A level in the CM (conditioned medium). Immunodepletion of the proform of eosinophil major basic protein (proMBP), a known PAPP-A inhibitor, from CM of TPA-treated cells (TPA CM) failed to increase IGFBP-4 proteolytic activity. Transduction of hSFs with proMBP retrovirus increased the concentration of proMBP up to 30 ng/ml and led to a moderate reduction in IGFBP-4 proteolysis. In contrast, TPA treatment blocked IGFBP-4 proteolysis but failed to induce a detectable amount of proMBP in the CM. While proMBP overexpression led to the formation of a covalent proMBP-PAPP-A complex and reduced the migration of PAPP-A on SDS/PAGE, TPA treatment dose- and time-dependently increased the conversion of a ≈ 470 kDa PAPP-A form (PAPP-A470) to a ≈ 400 kDa PAPP-A form (PAPP-A 400). Since unreduced PAPP-A400 co-migrated with the 400 kDa recombinant PAPP-A homodimer and since PAPP-A monomers from reduced PAPP-A470 and PAPP-A400 co-migrated on SDS/PAGE, conversion of PAPP-A470 to PAPP-A400 is unlikely to be caused by proteolytic cleavage of PAPP-A. Consistent with the data showing that the increase in the ratio of PAPP-A400/PAPP-A470 is correlated with the extent of reduction in IGFBP-4 proteolysis, partially purified PAPP-A400 exhibited a 4-fold reduction in IGFBP-4 proteolytic activity compared with PAPP-A470. These data suggest that a novel mechanism, namely conversion of PAPP-A470 to the less-active PAPP-A400, could account for the TPA-induced suppression of PAPP-A activity.
Original language | English (US) |
---|---|
Pages (from-to) | 57-64 |
Number of pages | 8 |
Journal | Biochemical Journal |
Volume | 379 |
Issue number | 1 |
DOIs | |
State | Published - Apr 1 2004 |
Keywords
- Insulin-like growth factor (IGF)
- Insulin-like growth factor-binding protein 4 (IGFBP-4)
- Osteoblast
- Post-translational modification
- Pregnancy-associated plasma protein-A (PAPP-A)
- Protease
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology