Structural consequences of transcortical holes in long bones loaded in torsion

J. A. Hipp, B. C. Edgerton, K. N. An, W. C. Hayes

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

Finite element models were used to predict the structural consequences of transcortical holes through long bones loaded in torsion. Several parameters were investigated including hole size, anelastic behavior of the bone, cortical wall thickness, cortical wall symmetry, curvature along the bone's long axis and the axial length of the defect. Finite element model predictions of percent intact bone strength were compared to experimental data for sheep femora with transcortical drill holes loaded to failure in torsion. Hole size was expressed as hole diameter divided by the outer bone diameter. Linear finite element model predictions were in conservative agreement with the experimental data for large hole sizes. A transcortical hole with a diameter 50% of the outer bone diameter reduced the torsional strength by 60%. However, the linear models predict a 40% drop in strength for small holes whereas in vitro data suggest that small holes have no significant effect on strength. Models which represent non-linear anelastic behavior in bone over-predicted torsional strengths. Asymmetric cortical wall thickness and long bone bowing have minor effects, while the length of an elongated defect strongly influences the torsional strength. Strength reductions are greatest for bones with thin cortical walls.

Original languageEnglish (US)
Pages (from-to)1261-1268
Number of pages8
JournalJournal of Biomechanics
Volume23
Issue number12
DOIs
StatePublished - 1990

ASJC Scopus subject areas

  • Biophysics
  • Orthopedics and Sports Medicine
  • Biomedical Engineering
  • Rehabilitation

Fingerprint

Dive into the research topics of 'Structural consequences of transcortical holes in long bones loaded in torsion'. Together they form a unique fingerprint.

Cite this