TY - JOUR
T1 - Stratification of long-term outcome in stable idiopathic pulmonary fibrosis by combining longitudinal computed tomography and forced vital capacity
AU - Sverzellati, Nicola
AU - Silva, Mario
AU - Seletti, Valeria
AU - Galeone, Carlotta
AU - Palmucci, Stefano
AU - Piciucchi, Sara
AU - Vancheri, Carlo
AU - Poletti, Venerino
AU - Tomassetti, Sara
AU - Karwoski, Ronald
AU - Bartholmai, Brian J.
N1 - Funding Information:
Dr. Bartholmai reports personal fees from Promedior, LLC, and from Imbio, LLC, outside the submitted work. Mayo Clinic has received grants from NIH/NHLBI, fees from Imbio, LLC, and Boehringer Ingelheim outside the submitted work. In addition, Dr. Bartholmai has a patent SYSTEMS AND METHODS FOR ANALYZING IN VIVO TISSUE VOLUMES USING MEDICAL IMAGING pending to Mayo Clinic.
Funding Information:
This study has received funding by the European Society of Thoracic Imaging.
Publisher Copyright:
© 2019, European Society of Radiology.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Objectives: To test HRCT with either visual or quantitative analysis in both short-term and long-term follow-up of stable IPF against long-term (transplant-free) survival, beyond 2 years of disease stability. Methods: Fifty-eight IPF patients had FVC measurements and HRCTs at baseline (HRCT0), 10–14 months (HRCT1) and 22–26 months (HRCT2). Visual scoring, CALIPER quantitative analysis of HRCT measures, and their deltas were evaluated against combined all-cause mortality and lung transplantation by adjusted Cox proportional hazard models at each time interval. Results: At HRCT1, a ≥ 20% relative increase in CALIPER-total lung fibrosis yielded the highest radiological association with outcome (C-statistic 0.62). Moreover, the model combining FVC% drop ≥ 10% and ≥ 20% relative increase of CALIPER-total lung fibrosis improved the stratification of outcome (C-statistic 0.69, high-risk category HR 12.1; landmark analysis at HRCT1 C-statistic 0.66, HR 14.9 and at HRCT2 C-statistic 0.61, HR 21.8). Likewise, at HRCT2, the model combining FVC% decrease trend and ≥ 20% relative increase of CALIPER-pulmonary vessel–related volume (VRS) improved the stratification of outcome (C-statistic 0.65, HR 11.0; landmark analysis at HRCT1 C-statistic 0.62, HR 13.8 and at HRCT2 C-statistic 0.58, HR 12.6). A less robust stratification of outcome distinction was also demonstrated with the categorical visual scoring of disease change. Conclusions: Annual combined CALIPER -FVC changes showed the greatest stratification of long-term outcome in stable IPF patients, beyond 2 years. Key Points: • Longitudinal high-resolution computed tomography (HRCT) data is more helpful than baseline HRCT alone for stratification of long-term outcome in IPF. • HRCT changes by visual or quantitative analysis can be added with benefit to the current spirometric reference standard to improve stratification of long-term outcome in IPF. • HRCT follow-up at 12–14 months is more helpful than HRCT follow-up at 23–26 months in clinically stable subjects with IPF.
AB - Objectives: To test HRCT with either visual or quantitative analysis in both short-term and long-term follow-up of stable IPF against long-term (transplant-free) survival, beyond 2 years of disease stability. Methods: Fifty-eight IPF patients had FVC measurements and HRCTs at baseline (HRCT0), 10–14 months (HRCT1) and 22–26 months (HRCT2). Visual scoring, CALIPER quantitative analysis of HRCT measures, and their deltas were evaluated against combined all-cause mortality and lung transplantation by adjusted Cox proportional hazard models at each time interval. Results: At HRCT1, a ≥ 20% relative increase in CALIPER-total lung fibrosis yielded the highest radiological association with outcome (C-statistic 0.62). Moreover, the model combining FVC% drop ≥ 10% and ≥ 20% relative increase of CALIPER-total lung fibrosis improved the stratification of outcome (C-statistic 0.69, high-risk category HR 12.1; landmark analysis at HRCT1 C-statistic 0.66, HR 14.9 and at HRCT2 C-statistic 0.61, HR 21.8). Likewise, at HRCT2, the model combining FVC% decrease trend and ≥ 20% relative increase of CALIPER-pulmonary vessel–related volume (VRS) improved the stratification of outcome (C-statistic 0.65, HR 11.0; landmark analysis at HRCT1 C-statistic 0.62, HR 13.8 and at HRCT2 C-statistic 0.58, HR 12.6). A less robust stratification of outcome distinction was also demonstrated with the categorical visual scoring of disease change. Conclusions: Annual combined CALIPER -FVC changes showed the greatest stratification of long-term outcome in stable IPF patients, beyond 2 years. Key Points: • Longitudinal high-resolution computed tomography (HRCT) data is more helpful than baseline HRCT alone for stratification of long-term outcome in IPF. • HRCT changes by visual or quantitative analysis can be added with benefit to the current spirometric reference standard to improve stratification of long-term outcome in IPF. • HRCT follow-up at 12–14 months is more helpful than HRCT follow-up at 23–26 months in clinically stable subjects with IPF.
KW - Idiopathic pulmonary fibrosis
KW - Machine learning
KW - Multidetector computed tomography
KW - Outcome
KW - Usual interstitial pneumonia
UR - http://www.scopus.com/inward/record.url?scp=85078907216&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078907216&partnerID=8YFLogxK
U2 - 10.1007/s00330-019-06619-5
DO - 10.1007/s00330-019-06619-5
M3 - Article
C2 - 32006172
AN - SCOPUS:85078907216
SN - 0938-7994
VL - 30
SP - 2669
EP - 2679
JO - European Radiology
JF - European Radiology
IS - 5
ER -