Abstract
In shear wave elastography (SWE), acoustic radiation forces (ARF) are employed to generate shear waves within the tissue. Although the transmitted pulses are longer than those in conventional clinical ultrasound, they typically obey the mechanical and thermal regulatory limits. In arterial applications, specific safety concerns may arise, as ARF-induced stresses and strain rates could potentially affect the arterial wall. A previous simulation study (Doherty et al., J Biomech, 2013 Jan; 46(1):83-90) showed that stresses imposed by the ARF used in SWE are orders of magnitude lower than those caused by blood pressure. ARF-induced strain rates have not been investigated yet, therefore the aim of this study was to assess such strain rates in an ex vivo setup.
Original language | English (US) |
---|---|
Title of host publication | 2017 IEEE International Ultrasonics Symposium, IUS 2017 |
Publisher | IEEE Computer Society |
ISBN (Electronic) | 9781538633830 |
DOIs | |
State | Published - Oct 31 2017 |
Event | 2017 IEEE International Ultrasonics Symposium, IUS 2017 - Washington, United States Duration: Sep 6 2017 → Sep 9 2017 |
Other
Other | 2017 IEEE International Ultrasonics Symposium, IUS 2017 |
---|---|
Country/Territory | United States |
City | Washington |
Period | 9/6/17 → 9/9/17 |
ASJC Scopus subject areas
- Acoustics and Ultrasonics