Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA

Ann L Oberg, Douglas W. Mahoney, Jeanette E Eckel-Passow, Christopher J. Malone, Russell D. Wolfinger, Elizabeth G. Hill, Leslie T Jr. Cooper, Oyere K. Onuma, Craig Spiro, Terry M Therneau, Harold Robert (Bob) III Bergen

Research output: Contribution to journalArticle

100 Scopus citations


Statistical tools enable unified analysis of data from multiple global proteomic experiments, producing unbiased estimates of normalization terms despite the missing data problem inherent in these studies. The modeling approach, implementation, and useful visualization tools are demonstrated via a case study of complex biological samples assessed using the iTRAQ relative labeling protocol.

Original languageEnglish (US)
Pages (from-to)225-233
Number of pages9
JournalJournal of Proteome Research
Issue number1
StatePublished - Jan 2008



  • Backfitting
  • Fixed effects model
  • Gauss-Siedel
  • iTRAQ
  • Missing data
  • Mixed effects model
  • Normalization
  • Proteomics
  • Relative labeling protocol

ASJC Scopus subject areas

  • Biochemistry
  • Biotechnology
  • Genetics

Cite this