Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA

Ann L Oberg, Douglas W. Mahoney, Jeanette E Eckel-Passow, Christopher J. Malone, Russell D. Wolfinger, Elizabeth G. Hill, Leslie T Jr. Cooper, Oyere K. Onuma, Craig Spiro, Terry M Therneau, Harold Robert (Bob) III Bergen

Research output: Contribution to journalArticle

97 Citations (Scopus)

Abstract

Statistical tools enable unified analysis of data from multiple global proteomic experiments, producing unbiased estimates of normalization terms despite the missing data problem inherent in these studies. The modeling approach, implementation, and useful visualization tools are demonstrated via a case study of complex biological samples assessed using the iTRAQ relative labeling protocol.

Original languageEnglish (US)
Pages (from-to)225-233
Number of pages9
JournalJournal of Proteome Research
Volume7
Issue number1
DOIs
StatePublished - Jan 2008

Fingerprint

Analysis of variance (ANOVA)
Proteomics
Mass spectrometry
Mass Spectrometry
Statistical methods
Analysis of Variance
Labeling
Visualization
Experiments

Keywords

  • ANOVA
  • Backfitting
  • Fixed effects model
  • Gauss-Siedel
  • iTRAQ
  • Missing data
  • Mixed effects model
  • Normalization
  • Proteomics
  • Relative labeling protocol

ASJC Scopus subject areas

  • Biochemistry
  • Biotechnology
  • Genetics

Cite this

Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA. / Oberg, Ann L; Mahoney, Douglas W.; Eckel-Passow, Jeanette E; Malone, Christopher J.; Wolfinger, Russell D.; Hill, Elizabeth G.; Cooper, Leslie T Jr.; Onuma, Oyere K.; Spiro, Craig; Therneau, Terry M; Bergen, Harold Robert (Bob) III.

In: Journal of Proteome Research, Vol. 7, No. 1, 01.2008, p. 225-233.

Research output: Contribution to journalArticle

Oberg, Ann L ; Mahoney, Douglas W. ; Eckel-Passow, Jeanette E ; Malone, Christopher J. ; Wolfinger, Russell D. ; Hill, Elizabeth G. ; Cooper, Leslie T Jr. ; Onuma, Oyere K. ; Spiro, Craig ; Therneau, Terry M ; Bergen, Harold Robert (Bob) III. / Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA. In: Journal of Proteome Research. 2008 ; Vol. 7, No. 1. pp. 225-233.
@article{140e745fbed54c66a10223d6a4426f7a,
title = "Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA",
abstract = "Statistical tools enable unified analysis of data from multiple global proteomic experiments, producing unbiased estimates of normalization terms despite the missing data problem inherent in these studies. The modeling approach, implementation, and useful visualization tools are demonstrated via a case study of complex biological samples assessed using the iTRAQ relative labeling protocol.",
keywords = "ANOVA, Backfitting, Fixed effects model, Gauss-Siedel, iTRAQ, Missing data, Mixed effects model, Normalization, Proteomics, Relative labeling protocol",
author = "Oberg, {Ann L} and Mahoney, {Douglas W.} and Eckel-Passow, {Jeanette E} and Malone, {Christopher J.} and Wolfinger, {Russell D.} and Hill, {Elizabeth G.} and Cooper, {Leslie T Jr.} and Onuma, {Oyere K.} and Craig Spiro and Therneau, {Terry M} and Bergen, {Harold Robert (Bob) III}",
year = "2008",
month = "1",
doi = "10.1021/pr700734f",
language = "English (US)",
volume = "7",
pages = "225--233",
journal = "Journal of Proteome Research",
issn = "1535-3893",
publisher = "American Chemical Society",
number = "1",

}

TY - JOUR

T1 - Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA

AU - Oberg, Ann L

AU - Mahoney, Douglas W.

AU - Eckel-Passow, Jeanette E

AU - Malone, Christopher J.

AU - Wolfinger, Russell D.

AU - Hill, Elizabeth G.

AU - Cooper, Leslie T Jr.

AU - Onuma, Oyere K.

AU - Spiro, Craig

AU - Therneau, Terry M

AU - Bergen, Harold Robert (Bob) III

PY - 2008/1

Y1 - 2008/1

N2 - Statistical tools enable unified analysis of data from multiple global proteomic experiments, producing unbiased estimates of normalization terms despite the missing data problem inherent in these studies. The modeling approach, implementation, and useful visualization tools are demonstrated via a case study of complex biological samples assessed using the iTRAQ relative labeling protocol.

AB - Statistical tools enable unified analysis of data from multiple global proteomic experiments, producing unbiased estimates of normalization terms despite the missing data problem inherent in these studies. The modeling approach, implementation, and useful visualization tools are demonstrated via a case study of complex biological samples assessed using the iTRAQ relative labeling protocol.

KW - ANOVA

KW - Backfitting

KW - Fixed effects model

KW - Gauss-Siedel

KW - iTRAQ

KW - Missing data

KW - Mixed effects model

KW - Normalization

KW - Proteomics

KW - Relative labeling protocol

UR - http://www.scopus.com/inward/record.url?scp=38649099066&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38649099066&partnerID=8YFLogxK

U2 - 10.1021/pr700734f

DO - 10.1021/pr700734f

M3 - Article

C2 - 18173221

AN - SCOPUS:38649099066

VL - 7

SP - 225

EP - 233

JO - Journal of Proteome Research

JF - Journal of Proteome Research

SN - 1535-3893

IS - 1

ER -