State of the art in translating experimental myelomeningocele research to the bedside

Lourenço Sbragia, Karina Miura da Costa, Antonio Landolffi Abdul Nour, Rodrigo Ruano, Marcelo Volpon Santos, Hélio Rubens Machado

Research output: Contribution to journalArticlepeer-review

Abstract

Myelomeningocele (MMC), the commonest type of spina bifida (SB), occurs due to abnormal development of the neural tube and manifest as failure of the complete fusion of posterior arches of the spinal column, leading to dysplastic growth of the spinal cord and meninges. It is associated with several degrees of motor and sensory deficits below the level of the lesion, as well as skeletal deformities, bladder and bowel incontinence, and sexual dysfunction. These children might develop varying degrees of neuropsychomotor delay, partly due to the severity of the injuries that affect the nervous system before birth, partly due to the related cerebral malformations (notably hydrocephalus—which may also lead to an increase in intracranial pressure—and Chiari II deformity). Traditionally, MMC was repaired surgically just after birth; however, intrauterine correction of MMC has been shown to have several potential benefits, including better sensorimotor outcomes (since exposure to amniotic fluid and its consequent deleterious effects is shortened) and reduced rates of hydrocephalus, among others. Fetal surgery for myelomeningocele, nevertheless, would not have been made possible without the development of experimental models of this pathological condition. Hence, the aim of the current article is to provide an overview of the animal models of MMC that were used over the years and describe how this knowledge has been translated into the fetal treatment of MMC in humans.

Original languageEnglish (US)
Pages (from-to)2769-2785
Number of pages17
JournalChild's Nervous System
Volume37
Issue number9
DOIs
StatePublished - Sep 2021

Keywords

  • Experimental myelomeningocele
  • Fetal surgery
  • Myelomeningocele
  • Spina bifida

ASJC Scopus subject areas

  • Pediatrics, Perinatology, and Child Health
  • Clinical Neurology

Fingerprint

Dive into the research topics of 'State of the art in translating experimental myelomeningocele research to the bedside'. Together they form a unique fingerprint.

Cite this