TY - JOUR
T1 - Sorafenib, a multikinase inhibitor, is effective in vitro against non-hodgkin lymphoma and synergizes with the mTOR inhibitor rapamycin
AU - Ramakrishnan, Vijay
AU - Timm, Michael
AU - Haug, Jessica L.
AU - Kimlinger, Teresa K.
AU - Halling, Timothy
AU - Wellik, Linda E.
AU - Witzig, Thomas E.
AU - Vincent Rajkumar, S.
AU - Adjei, Alex A.
AU - Kumar, Shaji
PY - 2012/3
Y1 - 2012/3
N2 - Non-Hodgkin lymphoma (NHL) represents a heterogenous group of neoplasias originating from lymphoid cells. Increased angiogenesis and expression of Vascular Endothelial Growth Factor (VEGF) and its receptors (VEGFR) have been found to be associated with NHL disease progression. Increase in VEGF and other cytokines stimulate signaling cascades, including the Ras/Raf/Mek/Erk pathway, resulting in increased proliferation and decreased apoptosis. Here, we report the in vitro antilymphoma activity of sorafenib, an inhibitor of VEGFR and Raf kinase. Sorafenib induced potent cytotoxicity in NHL cell lines and patient samples. This induction of cytotoxicity was associated with a corresponding increase in apoptotic cell death. Mechanism of action of sorafenib was investigated in follicular (DoHH2) and Burkitt lymphoma (Raji) cell lines. pStat3, pAkt, Mcl1, and Xiap were downregulated in both cell lines, whereas pErk decreased in Raji but not in DoHH2 cells following sorafenib treatment. IL6 was unable to prevent sorafenib induced repression of pStat3, pAkt, Mcl1, and Bcl-Xl. Sorafenib in combination with an mTORC1 inhibitor rapamycin demonstrated synergy in inducing cytotoxicity in NHL cells. Sorafenib/rapamycin combination resulted in downregulation of pAkt, pmTOR, p-p70S6K, p4EBP1, pGSK3β, Mcl1, and Bcl-Xl. On the basis of our results, a clinical trial is underway using sorafenib with everolimus in NHL patients.
AB - Non-Hodgkin lymphoma (NHL) represents a heterogenous group of neoplasias originating from lymphoid cells. Increased angiogenesis and expression of Vascular Endothelial Growth Factor (VEGF) and its receptors (VEGFR) have been found to be associated with NHL disease progression. Increase in VEGF and other cytokines stimulate signaling cascades, including the Ras/Raf/Mek/Erk pathway, resulting in increased proliferation and decreased apoptosis. Here, we report the in vitro antilymphoma activity of sorafenib, an inhibitor of VEGFR and Raf kinase. Sorafenib induced potent cytotoxicity in NHL cell lines and patient samples. This induction of cytotoxicity was associated with a corresponding increase in apoptotic cell death. Mechanism of action of sorafenib was investigated in follicular (DoHH2) and Burkitt lymphoma (Raji) cell lines. pStat3, pAkt, Mcl1, and Xiap were downregulated in both cell lines, whereas pErk decreased in Raji but not in DoHH2 cells following sorafenib treatment. IL6 was unable to prevent sorafenib induced repression of pStat3, pAkt, Mcl1, and Bcl-Xl. Sorafenib in combination with an mTORC1 inhibitor rapamycin demonstrated synergy in inducing cytotoxicity in NHL cells. Sorafenib/rapamycin combination resulted in downregulation of pAkt, pmTOR, p-p70S6K, p4EBP1, pGSK3β, Mcl1, and Bcl-Xl. On the basis of our results, a clinical trial is underway using sorafenib with everolimus in NHL patients.
UR - http://www.scopus.com/inward/record.url?scp=84857053389&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84857053389&partnerID=8YFLogxK
U2 - 10.1002/ajh.22263
DO - 10.1002/ajh.22263
M3 - Article
C2 - 22190165
AN - SCOPUS:84857053389
SN - 0361-8609
VL - 87
SP - 277
EP - 283
JO - American Journal of Hematology
JF - American Journal of Hematology
IS - 3
ER -