SLC2A9 genotype is associated with SLC2A9 gene expression and urinary uric acid concentration

Erin B. Ware, Ellen Riehle, Jennifer A. Smith, Wei Zhao, Stephen T Turner, Sharon L R Kardia, John C Lieske

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Objectives: SLC2A9 gene variants have been associated with urinary uric acid (UA) concentration, but little is known about the functional mechanism linking these gene variants with UA. SLC2A9 encodes a UA transporter present in the proximal tubule of the kidney, and gene expression levels of SLC2A9 and other genes in the uricosuric pathway (ABCG2, SLC17A1, SLC17A3, and SLC22A12) could potentially mediate the relationship between SLC2A9 gene variants and urinary UA excretion. Methods: The association between urinary UA concentrations and single nucleotide polymorphisms (SNPs) within the SLC2A9 gene region, expression levels of genes in the uricosuric pathway, and dietary protein intake were analyzed for a sample of non-Hispanic white participants from the Genetic Epidemiology Network of Arteriopathy (GENOA) cohort. The SLC2A9 SNP most significantly associated with urinary UA concentration was then tested for associations with gene expression levels from uric acid absorption/secretion associated genes. Models including interactions between dietary protein (total, animal, and vegetable) and genetic factors were also assessed. Results: The most significant SLC2A9 SNP associated with urinary UA (rs12509955, corrected p = 0.001) was also associated with SLC2A9 gene expression levels (corrected p = 0.0084); however, SLC2A9 gene expression levels were not significantly associated with urinary UA concentrations (p = 0.509). The interactions between rs12509955 and total dietary protein, and SLC2A9 gene-level gene expression and dietary vegetable protein on the outcome of urinary UA were marginally significant (p = 0.11 and p = 0.07, respectively). Gene expression level of one SLC2A9 transcript had a significant interaction with dietary animal protein (SLC2A9-001 ENST00000506583, p = 0.01) and a marginally significant interaction with total dietary protein (p = 0.07) on urinary UA. Conclusion: Our results illustrate that SNPs in the SLC2A9 gene influence SLC2A9 gene expression as well as urinary UA excretion. Evidence is also suggestive that gene-by-diet interactions may disproportionately increase urinary UA in genetically susceptible individuals that consume higher amounts of protein.

Original languageEnglish (US)
Article numbere0128593
JournalPLoS One
Volume10
Issue number7
DOIs
StatePublished - Jul 13 2015

Fingerprint

uric acid
Uric Acid
Gene expression
Genotype
Gene Expression
gene expression
Genes
genotype
Dietary Proteins
Polymorphism
genes
single nucleotide polymorphism
dietary protein
Single Nucleotide Polymorphism
Nucleotides
Animals
excretion
Vegetable Proteins
animal source protein
vegetable protein

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

SLC2A9 genotype is associated with SLC2A9 gene expression and urinary uric acid concentration. / Ware, Erin B.; Riehle, Ellen; Smith, Jennifer A.; Zhao, Wei; Turner, Stephen T; Kardia, Sharon L R; Lieske, John C.

In: PLoS One, Vol. 10, No. 7, e0128593, 13.07.2015.

Research output: Contribution to journalArticle

Ware, Erin B. ; Riehle, Ellen ; Smith, Jennifer A. ; Zhao, Wei ; Turner, Stephen T ; Kardia, Sharon L R ; Lieske, John C. / SLC2A9 genotype is associated with SLC2A9 gene expression and urinary uric acid concentration. In: PLoS One. 2015 ; Vol. 10, No. 7.
@article{2a1479ba9fe84641a70356f230cb8ced,
title = "SLC2A9 genotype is associated with SLC2A9 gene expression and urinary uric acid concentration",
abstract = "Objectives: SLC2A9 gene variants have been associated with urinary uric acid (UA) concentration, but little is known about the functional mechanism linking these gene variants with UA. SLC2A9 encodes a UA transporter present in the proximal tubule of the kidney, and gene expression levels of SLC2A9 and other genes in the uricosuric pathway (ABCG2, SLC17A1, SLC17A3, and SLC22A12) could potentially mediate the relationship between SLC2A9 gene variants and urinary UA excretion. Methods: The association between urinary UA concentrations and single nucleotide polymorphisms (SNPs) within the SLC2A9 gene region, expression levels of genes in the uricosuric pathway, and dietary protein intake were analyzed for a sample of non-Hispanic white participants from the Genetic Epidemiology Network of Arteriopathy (GENOA) cohort. The SLC2A9 SNP most significantly associated with urinary UA concentration was then tested for associations with gene expression levels from uric acid absorption/secretion associated genes. Models including interactions between dietary protein (total, animal, and vegetable) and genetic factors were also assessed. Results: The most significant SLC2A9 SNP associated with urinary UA (rs12509955, corrected p = 0.001) was also associated with SLC2A9 gene expression levels (corrected p = 0.0084); however, SLC2A9 gene expression levels were not significantly associated with urinary UA concentrations (p = 0.509). The interactions between rs12509955 and total dietary protein, and SLC2A9 gene-level gene expression and dietary vegetable protein on the outcome of urinary UA were marginally significant (p = 0.11 and p = 0.07, respectively). Gene expression level of one SLC2A9 transcript had a significant interaction with dietary animal protein (SLC2A9-001 ENST00000506583, p = 0.01) and a marginally significant interaction with total dietary protein (p = 0.07) on urinary UA. Conclusion: Our results illustrate that SNPs in the SLC2A9 gene influence SLC2A9 gene expression as well as urinary UA excretion. Evidence is also suggestive that gene-by-diet interactions may disproportionately increase urinary UA in genetically susceptible individuals that consume higher amounts of protein.",
author = "Ware, {Erin B.} and Ellen Riehle and Smith, {Jennifer A.} and Wei Zhao and Turner, {Stephen T} and Kardia, {Sharon L R} and Lieske, {John C}",
year = "2015",
month = "7",
day = "13",
doi = "10.1371/journal.pone.0128593",
language = "English (US)",
volume = "10",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "7",

}

TY - JOUR

T1 - SLC2A9 genotype is associated with SLC2A9 gene expression and urinary uric acid concentration

AU - Ware, Erin B.

AU - Riehle, Ellen

AU - Smith, Jennifer A.

AU - Zhao, Wei

AU - Turner, Stephen T

AU - Kardia, Sharon L R

AU - Lieske, John C

PY - 2015/7/13

Y1 - 2015/7/13

N2 - Objectives: SLC2A9 gene variants have been associated with urinary uric acid (UA) concentration, but little is known about the functional mechanism linking these gene variants with UA. SLC2A9 encodes a UA transporter present in the proximal tubule of the kidney, and gene expression levels of SLC2A9 and other genes in the uricosuric pathway (ABCG2, SLC17A1, SLC17A3, and SLC22A12) could potentially mediate the relationship between SLC2A9 gene variants and urinary UA excretion. Methods: The association between urinary UA concentrations and single nucleotide polymorphisms (SNPs) within the SLC2A9 gene region, expression levels of genes in the uricosuric pathway, and dietary protein intake were analyzed for a sample of non-Hispanic white participants from the Genetic Epidemiology Network of Arteriopathy (GENOA) cohort. The SLC2A9 SNP most significantly associated with urinary UA concentration was then tested for associations with gene expression levels from uric acid absorption/secretion associated genes. Models including interactions between dietary protein (total, animal, and vegetable) and genetic factors were also assessed. Results: The most significant SLC2A9 SNP associated with urinary UA (rs12509955, corrected p = 0.001) was also associated with SLC2A9 gene expression levels (corrected p = 0.0084); however, SLC2A9 gene expression levels were not significantly associated with urinary UA concentrations (p = 0.509). The interactions between rs12509955 and total dietary protein, and SLC2A9 gene-level gene expression and dietary vegetable protein on the outcome of urinary UA were marginally significant (p = 0.11 and p = 0.07, respectively). Gene expression level of one SLC2A9 transcript had a significant interaction with dietary animal protein (SLC2A9-001 ENST00000506583, p = 0.01) and a marginally significant interaction with total dietary protein (p = 0.07) on urinary UA. Conclusion: Our results illustrate that SNPs in the SLC2A9 gene influence SLC2A9 gene expression as well as urinary UA excretion. Evidence is also suggestive that gene-by-diet interactions may disproportionately increase urinary UA in genetically susceptible individuals that consume higher amounts of protein.

AB - Objectives: SLC2A9 gene variants have been associated with urinary uric acid (UA) concentration, but little is known about the functional mechanism linking these gene variants with UA. SLC2A9 encodes a UA transporter present in the proximal tubule of the kidney, and gene expression levels of SLC2A9 and other genes in the uricosuric pathway (ABCG2, SLC17A1, SLC17A3, and SLC22A12) could potentially mediate the relationship between SLC2A9 gene variants and urinary UA excretion. Methods: The association between urinary UA concentrations and single nucleotide polymorphisms (SNPs) within the SLC2A9 gene region, expression levels of genes in the uricosuric pathway, and dietary protein intake were analyzed for a sample of non-Hispanic white participants from the Genetic Epidemiology Network of Arteriopathy (GENOA) cohort. The SLC2A9 SNP most significantly associated with urinary UA concentration was then tested for associations with gene expression levels from uric acid absorption/secretion associated genes. Models including interactions between dietary protein (total, animal, and vegetable) and genetic factors were also assessed. Results: The most significant SLC2A9 SNP associated with urinary UA (rs12509955, corrected p = 0.001) was also associated with SLC2A9 gene expression levels (corrected p = 0.0084); however, SLC2A9 gene expression levels were not significantly associated with urinary UA concentrations (p = 0.509). The interactions between rs12509955 and total dietary protein, and SLC2A9 gene-level gene expression and dietary vegetable protein on the outcome of urinary UA were marginally significant (p = 0.11 and p = 0.07, respectively). Gene expression level of one SLC2A9 transcript had a significant interaction with dietary animal protein (SLC2A9-001 ENST00000506583, p = 0.01) and a marginally significant interaction with total dietary protein (p = 0.07) on urinary UA. Conclusion: Our results illustrate that SNPs in the SLC2A9 gene influence SLC2A9 gene expression as well as urinary UA excretion. Evidence is also suggestive that gene-by-diet interactions may disproportionately increase urinary UA in genetically susceptible individuals that consume higher amounts of protein.

UR - http://www.scopus.com/inward/record.url?scp=84940744762&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84940744762&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0128593

DO - 10.1371/journal.pone.0128593

M3 - Article

C2 - 26167684

AN - SCOPUS:84940744762

VL - 10

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 7

M1 - e0128593

ER -