TY - JOUR
T1 - Skeletal muscle tensile strain dependence
T2 - Hyperviscoelastic nonlinearity
AU - Wheatley, Benjamin B.
AU - Morrow, Duane A.
AU - Odegard, Gregory M.
AU - Kaufman, Kenton R.
AU - Haut Donahue, Tammy L.
N1 - Funding Information:
The authors would like to gratefully acknowledge the National Institutes of Health: National Institute of Child Health and Human Development for financial support ( R01HD31476-12 ).
Publisher Copyright:
© 2015 Elsevier Ltd.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Introduction: Computational modeling of skeletal muscle requires characterization at the tissue level. While most skeletal muscle studies focus on hyperelasticity, the goal of this study was to examine and model the nonlinear behavior of both time-independent and time-dependent properties of skeletal muscle as a function of strain. Materials and methods: Nine tibialis anterior muscles from New Zealand White rabbits were subject to five consecutive stress relaxation cycles of roughly 3% strain. Individual relaxation steps were fit with a three-term linear Prony series. Prony series coefficients and relaxation ratio were assessed for strain dependence using a general linear statistical model. A fully nonlinear constitutive model was employed to capture the strain dependence of both the viscoelastic and instantaneous components. Results: Instantaneous modulus (p<0.0005) and mid-range relaxation (p<0.0005) increased significantly with strain level, while relaxation at longer time periods decreased with strain (p<0.0005). Time constants and overall relaxation ratio did not change with strain level (p>0.1). Additionally, the fully nonlinear hyperviscoelastic constitutive model provided an excellent fit to experimental data, while other models which included linear components failed to capture muscle function as accurately. Conclusions: Material properties of skeletal muscle are strain-dependent at the tissue level. This strain dependence can be included in computational models of skeletal muscle performance with a fully nonlinear hyperviscoelastic model.
AB - Introduction: Computational modeling of skeletal muscle requires characterization at the tissue level. While most skeletal muscle studies focus on hyperelasticity, the goal of this study was to examine and model the nonlinear behavior of both time-independent and time-dependent properties of skeletal muscle as a function of strain. Materials and methods: Nine tibialis anterior muscles from New Zealand White rabbits were subject to five consecutive stress relaxation cycles of roughly 3% strain. Individual relaxation steps were fit with a three-term linear Prony series. Prony series coefficients and relaxation ratio were assessed for strain dependence using a general linear statistical model. A fully nonlinear constitutive model was employed to capture the strain dependence of both the viscoelastic and instantaneous components. Results: Instantaneous modulus (p<0.0005) and mid-range relaxation (p<0.0005) increased significantly with strain level, while relaxation at longer time periods decreased with strain (p<0.0005). Time constants and overall relaxation ratio did not change with strain level (p>0.1). Additionally, the fully nonlinear hyperviscoelastic constitutive model provided an excellent fit to experimental data, while other models which included linear components failed to capture muscle function as accurately. Conclusions: Material properties of skeletal muscle are strain-dependent at the tissue level. This strain dependence can be included in computational models of skeletal muscle performance with a fully nonlinear hyperviscoelastic model.
UR - http://www.scopus.com/inward/record.url?scp=84942768019&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84942768019&partnerID=8YFLogxK
U2 - 10.1016/j.jmbbm.2015.08.041
DO - 10.1016/j.jmbbm.2015.08.041
M3 - Article
C2 - 26409235
AN - SCOPUS:84942768019
SN - 1751-6161
VL - 53
SP - 445
EP - 454
JO - Journal of the Mechanical Behavior of Biomedical Materials
JF - Journal of the Mechanical Behavior of Biomedical Materials
ER -