TY - JOUR
T1 - Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine
AU - Chen, Hui
AU - Redelman, Doug
AU - Ro, Seungil
AU - Ward, Sean M.
AU - Ördög, Tamás
AU - Sanders, Kenton M.
PY - 2007/1
Y1 - 2007/1
N2 - Specific functions of interstitial cells of Cajal (ICC) have been linked to distinct classes that differ by morphology and distribution. In the small intestine, slow wave-generating ICC are located in the myenteric region (ICC-MY), whereas ICC that mediate neuromuscular neurotransmission occur either throughout the circular muscle layer (intramuscular ICC, ICC-IM) or in association with the deep muscular plexus (ICC-DMP). Selective isolation of ICC to characterize specific properties has been difficult. Recently, neurokinin-1 receptors have been detected in murine ICC-DMP and neurons but not in ICC-MY. Here we identified and isolated ICC-DMP/IM by receptor-mediated internalization of fluorescent substance P and Kit immunofluorescence. Specificity of labeling was verified by confocal microscopy. Mouse and human ICC-DMP/IM were detected in suspension by fluorescent microscopy and harvested for RT-PCR with micropipettes. The isolated cells expressed Kit but not markers for neurons, smooth muscle, or antigen-presenting cells. ICC-DMP expressed neurokinin-1 receptor, M2 and M3 muscarinic receptors, P2Y1 and P2Y4 purinergic receptors, VIP receptor 2, soluble guanylate cyclase-1 subunits, and protein kinase G. L- or T-type Ca2+ channels were not detected in these cells. ICC-MY and ICC-DMP were simultaneously detected and enumerated by flow cytometry and sorted to purity by fluorescence-activated cell sorting. In summary, functional classes of ICC have distinct molecular identities that can be used to selectively identify and harvest these cells with, for example, receptor-mediated uptake of substance P and Kit immunofluorescence. ICC-DMP express neurotransmitter receptors and signaling intermediate molecules that are consistent with their role in neuromuscular neurotransmission.
AB - Specific functions of interstitial cells of Cajal (ICC) have been linked to distinct classes that differ by morphology and distribution. In the small intestine, slow wave-generating ICC are located in the myenteric region (ICC-MY), whereas ICC that mediate neuromuscular neurotransmission occur either throughout the circular muscle layer (intramuscular ICC, ICC-IM) or in association with the deep muscular plexus (ICC-DMP). Selective isolation of ICC to characterize specific properties has been difficult. Recently, neurokinin-1 receptors have been detected in murine ICC-DMP and neurons but not in ICC-MY. Here we identified and isolated ICC-DMP/IM by receptor-mediated internalization of fluorescent substance P and Kit immunofluorescence. Specificity of labeling was verified by confocal microscopy. Mouse and human ICC-DMP/IM were detected in suspension by fluorescent microscopy and harvested for RT-PCR with micropipettes. The isolated cells expressed Kit but not markers for neurons, smooth muscle, or antigen-presenting cells. ICC-DMP expressed neurokinin-1 receptor, M2 and M3 muscarinic receptors, P2Y1 and P2Y4 purinergic receptors, VIP receptor 2, soluble guanylate cyclase-1 subunits, and protein kinase G. L- or T-type Ca2+ channels were not detected in these cells. ICC-MY and ICC-DMP were simultaneously detected and enumerated by flow cytometry and sorted to purity by fluorescence-activated cell sorting. In summary, functional classes of ICC have distinct molecular identities that can be used to selectively identify and harvest these cells with, for example, receptor-mediated uptake of substance P and Kit immunofluorescence. ICC-DMP express neurotransmitter receptors and signaling intermediate molecules that are consistent with their role in neuromuscular neurotransmission.
KW - Flow cytometry
KW - Kit
KW - Neurokinin-1 receptor
KW - RT-PCR
KW - Substance P
UR - http://www.scopus.com/inward/record.url?scp=33846273460&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33846273460&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.00147.2006
DO - 10.1152/ajpcell.00147.2006
M3 - Article
C2 - 16943245
AN - SCOPUS:33846273460
SN - 0363-6143
VL - 292
SP - C497-C507
JO - American Journal of Physiology
JF - American Journal of Physiology
IS - 1
ER -