TY - JOUR
T1 - Safety of Allogeneic Mesenchymal Stem Cell Seeding of NeuraGen Nerve Guides in a Rabbit Model
AU - Bedar, Meiwand
AU - Van Wijnen, Andre J.
AU - Shin, Alexander Y.
N1 - Funding Information:
Research reported in this publication was supported by the Mayo Clinic Orthopedic Research Review Committee (ORRC) and the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under Award Number RO1 NS 102360. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Publisher Copyright:
© Copyright 2023, Mary Ann Liebert, Inc., publishers 2023.
PY - 2023/2/1
Y1 - 2023/2/1
N2 - Mesenchymal stem cells (MSCs) stimulate nerve and tissue regeneration and are primed for clinical translation. Application of autologous MSCs is limited by requirements for expedient harvesting procedures, proliferative expansion to increase number of cells, and reduced regenerative potential due to aging or pathological conditions. Because MSCs are immune privileged, allogeneic MSCs may serve as "off-the-shelf"cell-based reconstructive treatments to support nerve repair. Therefore, we examined the safety and immune response parameters of allogeneic MSCs seeded on NeuraGen® Nerve Guides (NNGs) in a rabbit model. NNGs with or without allogeneic rabbit MSCs were applied to rabbit sciatic nerves. Randomly assigned treatment included group I (no surgery control, n = 3) or groups II and III (sciatic nerve wrapped with unseeded or allogeneic MSC-seeded NNGs; n = 5/group). Rabbits were euthanized after 2 weeks to monitor functional recovery by histological evaluation of sciatic nerves and tibialis anterior (TA) muscle. Host reactions to allogeneic MSCs were analyzed by assessment of body and tissue weight, temperature, as well as hematological parameters, including white blood cell count (WBC), spleen histology, and CD4+ and CD8+ T lymphocytes. Histological analyses of nerves and spleen were all unremarkable, consistent with absence of overt systemic and local immune responses upon allogeneic MSC administration. No significant differences were observed in WBC or CD4+ and CD8+ T lymphocytes across unseeded and seeded treatment groups. Thus, allogenic MSCs are safe for use and may be considered in lieu of autologous MSCs in translational animal studies as the basis for future clinical nerve repair strategies. Autologous mesenchymal stem cells (MSC) have been reported to enhance nerve regeneration when used in conjunction with nerve graft substitutes. However, autologous stem cell sources delay treatment and may be susceptible to age- or disease-related dysfunctions. In this study, we investigated the safety of allogeneic MSCs and the optimal number of cells for nerve conduit delivery in a rabbit model. When compared with unseeded nerve conduits, allogeneic MSC-seeded conduits did not induce a systemic or local immune response. The findings of this study will ultimately facilitate the clinical translation of a universal donor cell-based treatment option for nerve defects.
AB - Mesenchymal stem cells (MSCs) stimulate nerve and tissue regeneration and are primed for clinical translation. Application of autologous MSCs is limited by requirements for expedient harvesting procedures, proliferative expansion to increase number of cells, and reduced regenerative potential due to aging or pathological conditions. Because MSCs are immune privileged, allogeneic MSCs may serve as "off-the-shelf"cell-based reconstructive treatments to support nerve repair. Therefore, we examined the safety and immune response parameters of allogeneic MSCs seeded on NeuraGen® Nerve Guides (NNGs) in a rabbit model. NNGs with or without allogeneic rabbit MSCs were applied to rabbit sciatic nerves. Randomly assigned treatment included group I (no surgery control, n = 3) or groups II and III (sciatic nerve wrapped with unseeded or allogeneic MSC-seeded NNGs; n = 5/group). Rabbits were euthanized after 2 weeks to monitor functional recovery by histological evaluation of sciatic nerves and tibialis anterior (TA) muscle. Host reactions to allogeneic MSCs were analyzed by assessment of body and tissue weight, temperature, as well as hematological parameters, including white blood cell count (WBC), spleen histology, and CD4+ and CD8+ T lymphocytes. Histological analyses of nerves and spleen were all unremarkable, consistent with absence of overt systemic and local immune responses upon allogeneic MSC administration. No significant differences were observed in WBC or CD4+ and CD8+ T lymphocytes across unseeded and seeded treatment groups. Thus, allogenic MSCs are safe for use and may be considered in lieu of autologous MSCs in translational animal studies as the basis for future clinical nerve repair strategies. Autologous mesenchymal stem cells (MSC) have been reported to enhance nerve regeneration when used in conjunction with nerve graft substitutes. However, autologous stem cell sources delay treatment and may be susceptible to age- or disease-related dysfunctions. In this study, we investigated the safety of allogeneic MSCs and the optimal number of cells for nerve conduit delivery in a rabbit model. When compared with unseeded nerve conduits, allogeneic MSC-seeded conduits did not induce a systemic or local immune response. The findings of this study will ultimately facilitate the clinical translation of a universal donor cell-based treatment option for nerve defects.
KW - allogeneic mesenchymal stem cells
KW - cell transplantation
KW - collagen nerve conduit
KW - nerve graft substitute
KW - rabbit model
UR - http://www.scopus.com/inward/record.url?scp=85148250652&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85148250652&partnerID=8YFLogxK
U2 - 10.1089/ten.tec.2022.0159
DO - 10.1089/ten.tec.2022.0159
M3 - Article
C2 - 36680753
AN - SCOPUS:85148250652
SN - 1937-3384
VL - 29
SP - 43
EP - 53
JO - Tissue Engineering - Part C: Methods
JF - Tissue Engineering - Part C: Methods
IS - 2
ER -