Roles for Gcn5 in promoting nucleosome assembly and maintaining genome integrity

Rebecca J. Burgess, Zhiguo Zhang

Research output: Contribution to journalReview articlepeer-review

21 Scopus citations

Abstract

The process of coordinated DNA replication and nucleosome assembly, termed replication-coupled (RC) nucleosome assembly, is important for the maintenance of genome integrity. Loss of genome integrity is linked to aging and cancer. RC nucleosome assembly involves deposition of histone H3-H4 by the histone chaperones CAF-1, Rtt106 and Asf1 onto newly-replicated DNA. Coordinated actions of these three histone chaperones are regulated by modifications on the histone proteins. One such modification is histone H3 lysine 56 acetylation (H3K56Ac), a mark of newly-synthesized histone H3 that regulates the interaction between H3-H4 and the histone chaperones CAF-1 and Rtt106 following DNA replication and DNA repair. Recently, we have shown that the lysine acetyltransferase Gcn5 and H3 N-terminal tail lysine acetylation also regulates the interaction between H3-H4 and CAF-1 to promote the deposition of newly-synthesized histones. Genetic studies indicate that Gcn5 and Rtt109, the H3K56Ac lysine acetyltransferase, function in parallel to maintain genome stability. Utilizing synthetic genetic array analysis, we set out to identify additional genes that function in parallel with Gcn5 in response to DNA damage. We summarize here the role of Gcn5 in nucleosome assembly and suggest that Gcn5 impacts genome integrity via multiple mechanisms, including nucleosome assembly.

Original languageEnglish (US)
Pages (from-to)3051-3057
Number of pages7
JournalCell Cycle
Volume9
Issue number15
DOIs
StatePublished - Aug 1 2010

Keywords

  • Chromatin
  • Gen5
  • Genome integrity
  • Nucleosome assembly
  • Rtt109

ASJC Scopus subject areas

  • Molecular Biology
  • Developmental Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Roles for Gcn5 in promoting nucleosome assembly and maintaining genome integrity'. Together they form a unique fingerprint.

Cite this