Respiratory muscle blood flow during exercise: Effects of Sex and ovarian cycle

Joshua R. Smith, K. Sue Hageman, Craig A. Harms, David C. Poole, Timothy I. Musch

Research output: Contribution to journalArticlepeer-review

Abstract

Sex and ovarian cycle have been speculated to modify respiratory muscle blood flow control during exercise, but the findings are inconclusive. We tested the hypotheses that females would have higher respiratory muscle blood flow and vascular conductance (VC) compared with males during exercise and that this difference would be accentuated in proestrus vs. ovariectomized (OVA) females. Mean arterial pressure (carotid artery catheter) and respiratory muscle blood flow (radiolabeled microspheres) were measured during moderate-intensity (24 m/min, 10% grade) exercise in male (n = 9), female (n = 9), and OVA female (n = 7) rats and near-maximal (60 m/min, 5% grade) exercise in male (n = 5) and female (n = 7) rats. At rest, diaphragm, intercostal, and transversus abdominis blood flow were not different (P = 0.33) among groups. During moderate-intensity exercise, diaphragm (M: 124 ± 16; F: 140 ± 14; OVA: 140 ± 20 ml·min-1· 100 g-1), intercostal (M: 33 ± 5; F: 34 ± 5; OVA: 30 ± 5 ml·min-1·100 g-1), and transversus abdominis blood flow (M: 24 ± 4; F: 35 ± 7; OVA: 35 ± 9 ml·min-1·100 g-1) significantly increased in all groups compared with rest but were not different (P = 0.12) among groups. From rest to moderate-intensity exercise, diaphragm (P < 0.03) and transversus abdominis (P < 0.04) VC increased in all groups, whereas intercostal VC increased only for males and females (P = 0.01). No differences (P > 0.13) existed in VC among groups. During near-maximal exercise, diaphragm (M: 304 ± 62; F: 283 ± 17 ml·min-1·100 g-1), intercostal (M: 29 ± 8; F: 40 ± 6 ml·min-1·100 g-1), and transversus abdominis (M: 85 ± 14; F: 86 ± 9 ml·min-1·100 g-1) blood flow and VC were not different (P > 0.27) between males and females. These data demonstrate that respiratory muscle blood flow and vascular conductance at rest and during exercise are not affected by sex or ovarian cycle in rats.

Original languageEnglish (US)
Pages (from-to)918-924
Number of pages7
JournalJournal of applied physiology
Volume122
Issue number4
DOIs
StatePublished - 2017

Keywords

  • Blood flow
  • Estrogen
  • Respiratory muscles
  • Sex differences

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Respiratory muscle blood flow during exercise: Effects of Sex and ovarian cycle'. Together they form a unique fingerprint.

Cite this