Reprogramming to Pluripotency Can Conceal Somatic Cell Chromosomal Instability

Masakazu Hamada, Liviu A. Malureanu, Tobias Wijshake, Wei Zhou, Jan M. van Deursen, Beth A. Sullivan

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs) in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN) preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs) in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.

Original languageEnglish (US)
Article numbere1002913
JournalPLoS genetics
Volume8
Issue number8
DOIs
StatePublished - Aug 2012

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Genetics(clinical)
  • Cancer Research

Fingerprint

Dive into the research topics of 'Reprogramming to Pluripotency Can Conceal Somatic Cell Chromosomal Instability'. Together they form a unique fingerprint.

Cite this