Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism

Juan Valle Raleigh, Adolfo G. Mauro, Teja Devarakonda, Carlo Marchetti, Jun He, Erica Kim, Scott Filippone, Anindita Das, Stefano Toldo, Antonio Abbate, Fadi N. Salloum

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

Aims The preconditioning-like infarct-sparing and anti-inflammatory effects of the peptide hormone relaxin following ischemic injury have been studied in the heart. Whether reperfusion therapy with recombinant human relaxin-2, serelaxin, reduces myocardial infarct size and attenuates the subsequent NLRP3 inflammasome activation leading to further loss of functional myocardium following ischemia/reperfusion (I/R) injury is unknown. Methods and results After baseline echocardiography, adult male wild-type C57BL or eNOS knockout mice underwent myocardial infarction (MI) by coronary artery ligation for 30 min followed by 24 h reperfusion. Mice were treated with either serelaxin (10 μg/kg; sc) or saline 1 h prior to ischemia or 5 min before reperfusion. In both pre-treatment and reperfusion therapy arms, serelaxin improved survival at 24 h post MI in wild-type mice (79% and 82%) as compared with controls (46% and 50%, P = 0.01), whereas there was no difference in survival between serelaxin- and saline-treated eNOS knockout mice. Moreover, serelaxin significantly reduced infarct size (64% and 67% reduction, P < 0.05), measured with TTC staining, and preserved LV fractional shortening (FS) and end-systolic diameter (LVESD) in wild-type mice as compared with controls (P < 0.05). Interestingly, caspase-1 activity in the heart tissue, a measure of inflammasome formation, was markedly reduced in serelaxin-treated wild-type mice compared with controls at 24 h post-MI in both treatment modalities (P < 0.05). Genetic deletion of eNOS abolished the infarct-sparing and anti-inflammatory effects of serelaxin as well as functional preservation. Serelaxin plasma levels assessed at 5 min and 1 h after treatment, using ELISA, approximated physiologic relaxin levels during pregnancy in mice and parallels that in humans. Conclusion Serelaxin attenuates myocardial I/R injury and the subsequent caspase-1 activation via eNOS-dependent mechanism.

Original languageEnglish (US)
Pages (from-to)609-619
Number of pages11
JournalCardiovascular research
Volume113
Issue number6
DOIs
StatePublished - May 1 2017

Keywords

  • Caspase-1
  • Ischemia-reperfusion injury
  • LV function
  • Serelaxin
  • eNOS

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism'. Together they form a unique fingerprint.

Cite this