Renal perfusion and hemodynamics: Accurate in vivo determination at CT with a 10-fold decrease in radiation dose and HYPR noise reduction

Xin Liu, Andrew N. Primak, James D. Krier, Lifeng Yu, Lilach O Lerman, Cynthia H McCollough

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Purpose: To prospectively evaluate the accuracy of computed tomographic (CT) perfusion measurements of renal hemodynamics and function obtained by using images acquired with one-tenth the typical radiation dose and postprocessed with a highly constrained back-projection (HYPR)-local reconstruction (LR) noise-reduction technique. Materials and Methods: This study was approved by the institutional Animal Care and Use Committee. Two consecutive CT perfusion acquisitions were performed in 10 anesthetized pigs over 180 seconds by using routine (80 kV, 160 mAs) and one-tenth (80 kV, 16 mAs) dose levels. Images obtained with each acquisition were reconstructed with identical parameters, and the one-tenth dose images were also processed with a HYPR-LR algorithm. Attenuation changes in kidneys were determined as a function of time to form time-attenuation curves (TACs). Extended gamma-variate curve-fitting was performed, and regional perfusion, glomerular filtration rate, and renal blood flow were calculated. Image quality was evaluated (in 10 pigs), and the agreement for renal perfusion and function between the routine dose and the one-tenth dose HYPR-LR images was determined (for 20 kidneys) by using statistical methods. Statistical analysis was performed by using the paired t test, linear regression, and Bland-Altman analysis. Results: TACs obtained with the one-tenth dose were similar to those obtained with the routine dose. Statistical analysis showed that there were no significant differences between the routine dose and the one-tenth dose acquisitions in renal perfusion and hemodynamic values and that there were slight but statistically significant differences in some values with the one-tenth dose HYPR-LR-processed acquisition. The image quality of the one-tenth dose acquisition was improved by using the HYPR-LR algorithm. Linear regression and Bland-Altman plots showed agreement between the images acquired by using the routine dose and those acquired by using the one-tenth dose with HYPR-LR processing. Conclusion: A 10-fold dose reduction at renal perfusion CT imaging can be achieved in vivo, without loss of accuracy. The image quality of the one-tenth dose images could be improved to be near that of the routine dose images by using the HYPR-LR noise-reduction algorithm.

Original languageEnglish (US)
Pages (from-to)98-105
Number of pages8
JournalRadiology
Volume253
Issue number1
DOIs
StatePublished - Oct 2009

Fingerprint

Noise
Perfusion
Hemodynamics
Radiation
Kidney
Linear Models
Swine
Animal Care Committees
Computer-Assisted Image Processing
Renal Circulation
antineoplaston A10
Glomerular Filtration Rate

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Cite this

Renal perfusion and hemodynamics : Accurate in vivo determination at CT with a 10-fold decrease in radiation dose and HYPR noise reduction. / Liu, Xin; Primak, Andrew N.; Krier, James D.; Yu, Lifeng; Lerman, Lilach O; McCollough, Cynthia H.

In: Radiology, Vol. 253, No. 1, 10.2009, p. 98-105.

Research output: Contribution to journalArticle

@article{f6ee3ac9d18f4b9cad9472f8b6a48aea,
title = "Renal perfusion and hemodynamics: Accurate in vivo determination at CT with a 10-fold decrease in radiation dose and HYPR noise reduction",
abstract = "Purpose: To prospectively evaluate the accuracy of computed tomographic (CT) perfusion measurements of renal hemodynamics and function obtained by using images acquired with one-tenth the typical radiation dose and postprocessed with a highly constrained back-projection (HYPR)-local reconstruction (LR) noise-reduction technique. Materials and Methods: This study was approved by the institutional Animal Care and Use Committee. Two consecutive CT perfusion acquisitions were performed in 10 anesthetized pigs over 180 seconds by using routine (80 kV, 160 mAs) and one-tenth (80 kV, 16 mAs) dose levels. Images obtained with each acquisition were reconstructed with identical parameters, and the one-tenth dose images were also processed with a HYPR-LR algorithm. Attenuation changes in kidneys were determined as a function of time to form time-attenuation curves (TACs). Extended gamma-variate curve-fitting was performed, and regional perfusion, glomerular filtration rate, and renal blood flow were calculated. Image quality was evaluated (in 10 pigs), and the agreement for renal perfusion and function between the routine dose and the one-tenth dose HYPR-LR images was determined (for 20 kidneys) by using statistical methods. Statistical analysis was performed by using the paired t test, linear regression, and Bland-Altman analysis. Results: TACs obtained with the one-tenth dose were similar to those obtained with the routine dose. Statistical analysis showed that there were no significant differences between the routine dose and the one-tenth dose acquisitions in renal perfusion and hemodynamic values and that there were slight but statistically significant differences in some values with the one-tenth dose HYPR-LR-processed acquisition. The image quality of the one-tenth dose acquisition was improved by using the HYPR-LR algorithm. Linear regression and Bland-Altman plots showed agreement between the images acquired by using the routine dose and those acquired by using the one-tenth dose with HYPR-LR processing. Conclusion: A 10-fold dose reduction at renal perfusion CT imaging can be achieved in vivo, without loss of accuracy. The image quality of the one-tenth dose images could be improved to be near that of the routine dose images by using the HYPR-LR noise-reduction algorithm.",
author = "Xin Liu and Primak, {Andrew N.} and Krier, {James D.} and Lifeng Yu and Lerman, {Lilach O} and McCollough, {Cynthia H}",
year = "2009",
month = "10",
doi = "10.1148/radiol.2531081677",
language = "English (US)",
volume = "253",
pages = "98--105",
journal = "Radiology",
issn = "0033-8419",
publisher = "Radiological Society of North America Inc.",
number = "1",

}

TY - JOUR

T1 - Renal perfusion and hemodynamics

T2 - Accurate in vivo determination at CT with a 10-fold decrease in radiation dose and HYPR noise reduction

AU - Liu, Xin

AU - Primak, Andrew N.

AU - Krier, James D.

AU - Yu, Lifeng

AU - Lerman, Lilach O

AU - McCollough, Cynthia H

PY - 2009/10

Y1 - 2009/10

N2 - Purpose: To prospectively evaluate the accuracy of computed tomographic (CT) perfusion measurements of renal hemodynamics and function obtained by using images acquired with one-tenth the typical radiation dose and postprocessed with a highly constrained back-projection (HYPR)-local reconstruction (LR) noise-reduction technique. Materials and Methods: This study was approved by the institutional Animal Care and Use Committee. Two consecutive CT perfusion acquisitions were performed in 10 anesthetized pigs over 180 seconds by using routine (80 kV, 160 mAs) and one-tenth (80 kV, 16 mAs) dose levels. Images obtained with each acquisition were reconstructed with identical parameters, and the one-tenth dose images were also processed with a HYPR-LR algorithm. Attenuation changes in kidneys were determined as a function of time to form time-attenuation curves (TACs). Extended gamma-variate curve-fitting was performed, and regional perfusion, glomerular filtration rate, and renal blood flow were calculated. Image quality was evaluated (in 10 pigs), and the agreement for renal perfusion and function between the routine dose and the one-tenth dose HYPR-LR images was determined (for 20 kidneys) by using statistical methods. Statistical analysis was performed by using the paired t test, linear regression, and Bland-Altman analysis. Results: TACs obtained with the one-tenth dose were similar to those obtained with the routine dose. Statistical analysis showed that there were no significant differences between the routine dose and the one-tenth dose acquisitions in renal perfusion and hemodynamic values and that there were slight but statistically significant differences in some values with the one-tenth dose HYPR-LR-processed acquisition. The image quality of the one-tenth dose acquisition was improved by using the HYPR-LR algorithm. Linear regression and Bland-Altman plots showed agreement between the images acquired by using the routine dose and those acquired by using the one-tenth dose with HYPR-LR processing. Conclusion: A 10-fold dose reduction at renal perfusion CT imaging can be achieved in vivo, without loss of accuracy. The image quality of the one-tenth dose images could be improved to be near that of the routine dose images by using the HYPR-LR noise-reduction algorithm.

AB - Purpose: To prospectively evaluate the accuracy of computed tomographic (CT) perfusion measurements of renal hemodynamics and function obtained by using images acquired with one-tenth the typical radiation dose and postprocessed with a highly constrained back-projection (HYPR)-local reconstruction (LR) noise-reduction technique. Materials and Methods: This study was approved by the institutional Animal Care and Use Committee. Two consecutive CT perfusion acquisitions were performed in 10 anesthetized pigs over 180 seconds by using routine (80 kV, 160 mAs) and one-tenth (80 kV, 16 mAs) dose levels. Images obtained with each acquisition were reconstructed with identical parameters, and the one-tenth dose images were also processed with a HYPR-LR algorithm. Attenuation changes in kidneys were determined as a function of time to form time-attenuation curves (TACs). Extended gamma-variate curve-fitting was performed, and regional perfusion, glomerular filtration rate, and renal blood flow were calculated. Image quality was evaluated (in 10 pigs), and the agreement for renal perfusion and function between the routine dose and the one-tenth dose HYPR-LR images was determined (for 20 kidneys) by using statistical methods. Statistical analysis was performed by using the paired t test, linear regression, and Bland-Altman analysis. Results: TACs obtained with the one-tenth dose were similar to those obtained with the routine dose. Statistical analysis showed that there were no significant differences between the routine dose and the one-tenth dose acquisitions in renal perfusion and hemodynamic values and that there were slight but statistically significant differences in some values with the one-tenth dose HYPR-LR-processed acquisition. The image quality of the one-tenth dose acquisition was improved by using the HYPR-LR algorithm. Linear regression and Bland-Altman plots showed agreement between the images acquired by using the routine dose and those acquired by using the one-tenth dose with HYPR-LR processing. Conclusion: A 10-fold dose reduction at renal perfusion CT imaging can be achieved in vivo, without loss of accuracy. The image quality of the one-tenth dose images could be improved to be near that of the routine dose images by using the HYPR-LR noise-reduction algorithm.

UR - http://www.scopus.com/inward/record.url?scp=70350475745&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70350475745&partnerID=8YFLogxK

U2 - 10.1148/radiol.2531081677

DO - 10.1148/radiol.2531081677

M3 - Article

C2 - 19789255

AN - SCOPUS:70350475745

VL - 253

SP - 98

EP - 105

JO - Radiology

JF - Radiology

SN - 0033-8419

IS - 1

ER -