Reliability of landing 3D motion analysis

Implications for longitudinal analyses

Kevin R. Ford, Gregory D. Myer, Timothy Hewett

Research output: Contribution to journalArticle

127 Citations (Scopus)

Abstract

PURPOSE: Biomechanical measures quantified during dynamic tasks with coupled epidemiological data in longitudinal experimental designs may be useful to determine which mechanisms underlie injury risk in young athletes. A key component is the ability to reliably measure biomechanical variables between testing sessions. The purpose was to determine the reliability of three-dimensional (3D) lower-extremity kinematic and kinetic variables during landing in young athletes measured within a session and between two sessions 7 wk apart. METHODS: Lower-extremity kinetics and kinematics were quantified during a drop vertical jump. Coefficient of multiple correlations (CMC), intraclass correlation coefficients (ICC (3, k), ICC (3, 1)), and typical error (TE) analyses were used to examine within- and between-session reliability. RESULTS: There were no differences in within-session reliability for peak angular rotations between planes with all discrete variables combined (sagittal ICC ≥ 0.933, frontal ICC ≥ 0.955, transverse ICC ≥ 0.934). Similarly, the between-session reliability of kinematic measures were not different between the three planes of motion but were lower than the within-session ICC. The within- and between-session reliability of discrete joint moment variables were excellent for all sagittal (within ICC ≥ 0.925, between ICC ≥ 0.800) and frontal plane moment measures (within ICC ≥ 0.778, between ICC ≥ 0.748). CMC analysis revealed similar averaged within-session (CMC = 0.830 ± 0.119) and between-session (CMC = 0.823 ± 0.124) waveform comparisons. CONCLUSION: The majority of the kinematic and kinetic variables in young athletes during landing have excellent to good reliability. The ability to reliably quantify lower-extremity biomechanical variables of young athletes during dynamic tasks over extended intervals may aid in identifying potential mechanisms related to injury risk factors.

Original languageEnglish (US)
Pages (from-to)2021-2028
Number of pages8
JournalMedicine and Science in Sports and Exercise
Volume39
Issue number11
DOIs
StatePublished - Nov 2007
Externally publishedYes

Fingerprint

Biomechanical Phenomena
Athletes
Lower Extremity
Wounds and Injuries
Research Design
Joints

Keywords

  • Anterior cruciate ligament injury
  • Biomechanics
  • Drop vertical jump landing
  • Knee
  • Young athletes

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Physical Therapy, Sports Therapy and Rehabilitation
  • Orthopedics and Sports Medicine

Cite this

Reliability of landing 3D motion analysis : Implications for longitudinal analyses. / Ford, Kevin R.; Myer, Gregory D.; Hewett, Timothy.

In: Medicine and Science in Sports and Exercise, Vol. 39, No. 11, 11.2007, p. 2021-2028.

Research output: Contribution to journalArticle

@article{999794729b4c4b44b747b3e4b90dd3be,
title = "Reliability of landing 3D motion analysis: Implications for longitudinal analyses",
abstract = "PURPOSE: Biomechanical measures quantified during dynamic tasks with coupled epidemiological data in longitudinal experimental designs may be useful to determine which mechanisms underlie injury risk in young athletes. A key component is the ability to reliably measure biomechanical variables between testing sessions. The purpose was to determine the reliability of three-dimensional (3D) lower-extremity kinematic and kinetic variables during landing in young athletes measured within a session and between two sessions 7 wk apart. METHODS: Lower-extremity kinetics and kinematics were quantified during a drop vertical jump. Coefficient of multiple correlations (CMC), intraclass correlation coefficients (ICC (3, k), ICC (3, 1)), and typical error (TE) analyses were used to examine within- and between-session reliability. RESULTS: There were no differences in within-session reliability for peak angular rotations between planes with all discrete variables combined (sagittal ICC ≥ 0.933, frontal ICC ≥ 0.955, transverse ICC ≥ 0.934). Similarly, the between-session reliability of kinematic measures were not different between the three planes of motion but were lower than the within-session ICC. The within- and between-session reliability of discrete joint moment variables were excellent for all sagittal (within ICC ≥ 0.925, between ICC ≥ 0.800) and frontal plane moment measures (within ICC ≥ 0.778, between ICC ≥ 0.748). CMC analysis revealed similar averaged within-session (CMC = 0.830 ± 0.119) and between-session (CMC = 0.823 ± 0.124) waveform comparisons. CONCLUSION: The majority of the kinematic and kinetic variables in young athletes during landing have excellent to good reliability. The ability to reliably quantify lower-extremity biomechanical variables of young athletes during dynamic tasks over extended intervals may aid in identifying potential mechanisms related to injury risk factors.",
keywords = "Anterior cruciate ligament injury, Biomechanics, Drop vertical jump landing, Knee, Young athletes",
author = "Ford, {Kevin R.} and Myer, {Gregory D.} and Timothy Hewett",
year = "2007",
month = "11",
doi = "10.1249/mss.0b013e318149332d",
language = "English (US)",
volume = "39",
pages = "2021--2028",
journal = "Medicine and Science in Sports and Exercise",
issn = "0195-9131",
publisher = "Lippincott Williams and Wilkins",
number = "11",

}

TY - JOUR

T1 - Reliability of landing 3D motion analysis

T2 - Implications for longitudinal analyses

AU - Ford, Kevin R.

AU - Myer, Gregory D.

AU - Hewett, Timothy

PY - 2007/11

Y1 - 2007/11

N2 - PURPOSE: Biomechanical measures quantified during dynamic tasks with coupled epidemiological data in longitudinal experimental designs may be useful to determine which mechanisms underlie injury risk in young athletes. A key component is the ability to reliably measure biomechanical variables between testing sessions. The purpose was to determine the reliability of three-dimensional (3D) lower-extremity kinematic and kinetic variables during landing in young athletes measured within a session and between two sessions 7 wk apart. METHODS: Lower-extremity kinetics and kinematics were quantified during a drop vertical jump. Coefficient of multiple correlations (CMC), intraclass correlation coefficients (ICC (3, k), ICC (3, 1)), and typical error (TE) analyses were used to examine within- and between-session reliability. RESULTS: There were no differences in within-session reliability for peak angular rotations between planes with all discrete variables combined (sagittal ICC ≥ 0.933, frontal ICC ≥ 0.955, transverse ICC ≥ 0.934). Similarly, the between-session reliability of kinematic measures were not different between the three planes of motion but were lower than the within-session ICC. The within- and between-session reliability of discrete joint moment variables were excellent for all sagittal (within ICC ≥ 0.925, between ICC ≥ 0.800) and frontal plane moment measures (within ICC ≥ 0.778, between ICC ≥ 0.748). CMC analysis revealed similar averaged within-session (CMC = 0.830 ± 0.119) and between-session (CMC = 0.823 ± 0.124) waveform comparisons. CONCLUSION: The majority of the kinematic and kinetic variables in young athletes during landing have excellent to good reliability. The ability to reliably quantify lower-extremity biomechanical variables of young athletes during dynamic tasks over extended intervals may aid in identifying potential mechanisms related to injury risk factors.

AB - PURPOSE: Biomechanical measures quantified during dynamic tasks with coupled epidemiological data in longitudinal experimental designs may be useful to determine which mechanisms underlie injury risk in young athletes. A key component is the ability to reliably measure biomechanical variables between testing sessions. The purpose was to determine the reliability of three-dimensional (3D) lower-extremity kinematic and kinetic variables during landing in young athletes measured within a session and between two sessions 7 wk apart. METHODS: Lower-extremity kinetics and kinematics were quantified during a drop vertical jump. Coefficient of multiple correlations (CMC), intraclass correlation coefficients (ICC (3, k), ICC (3, 1)), and typical error (TE) analyses were used to examine within- and between-session reliability. RESULTS: There were no differences in within-session reliability for peak angular rotations between planes with all discrete variables combined (sagittal ICC ≥ 0.933, frontal ICC ≥ 0.955, transverse ICC ≥ 0.934). Similarly, the between-session reliability of kinematic measures were not different between the three planes of motion but were lower than the within-session ICC. The within- and between-session reliability of discrete joint moment variables were excellent for all sagittal (within ICC ≥ 0.925, between ICC ≥ 0.800) and frontal plane moment measures (within ICC ≥ 0.778, between ICC ≥ 0.748). CMC analysis revealed similar averaged within-session (CMC = 0.830 ± 0.119) and between-session (CMC = 0.823 ± 0.124) waveform comparisons. CONCLUSION: The majority of the kinematic and kinetic variables in young athletes during landing have excellent to good reliability. The ability to reliably quantify lower-extremity biomechanical variables of young athletes during dynamic tasks over extended intervals may aid in identifying potential mechanisms related to injury risk factors.

KW - Anterior cruciate ligament injury

KW - Biomechanics

KW - Drop vertical jump landing

KW - Knee

KW - Young athletes

UR - http://www.scopus.com/inward/record.url?scp=34248996153&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34248996153&partnerID=8YFLogxK

U2 - 10.1249/mss.0b013e318149332d

DO - 10.1249/mss.0b013e318149332d

M3 - Article

VL - 39

SP - 2021

EP - 2028

JO - Medicine and Science in Sports and Exercise

JF - Medicine and Science in Sports and Exercise

SN - 0195-9131

IS - 11

ER -