Relaxed conditions for sparse signal recovery with general concave priors

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

The emerging theory of compressive or compressed sensing challenges the convention of modern digital signal processing by establishing that exact signal reconstruction is possible for many problems where the sampling rate falls well below the Nyquist limit. Following the landmark works of Candès et al. and Donoho on the performance of ℓ1-minimization models for signal reconstruction, several authors demonstrated that certain nonconvex reconstruction models consistently outperform the convex ℓ1-model in practice at very low sampling rates despite the fact that no global minimum can be theoretically guaranteed. Nevertheless, there has been little theoretical investigation into the performance of these nonconvex models. In this paper, a notion of weak signal recoverability is introduced and the performance of nonconvex reconstruction models employing general concave metric priors is investigated under this model. The sufficient conditions for establishing weak signal recoverability are shown to substantially relax as the prior functional is parameterized to more closely resemble the targeted ℓ1 -model, offering new insight into the empirical performance of this general class of reconstruction methods. Examples of relaxation trends are shown for several different prior models.

Original languageEnglish (US)
Pages (from-to)4347-4354
Number of pages8
JournalIEEE Transactions on Signal Processing
Volume57
Issue number11
DOIs
StatePublished - 2009

Fingerprint

Recovery
Signal reconstruction
Sampling
Compressed sensing
Digital signal processing

Keywords

  • Compressed sensing
  • Compressive sensing
  • Restricted isometry property
  • Signal recovery
  • Weak recoverability

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Signal Processing

Cite this

Relaxed conditions for sparse signal recovery with general concave priors. / Trazasko, Joshua D; Manduca, Armando.

In: IEEE Transactions on Signal Processing, Vol. 57, No. 11, 2009, p. 4347-4354.

Research output: Contribution to journalArticle

@article{29cc470655cf47849f20430212887093,
title = "Relaxed conditions for sparse signal recovery with general concave priors",
abstract = "The emerging theory of compressive or compressed sensing challenges the convention of modern digital signal processing by establishing that exact signal reconstruction is possible for many problems where the sampling rate falls well below the Nyquist limit. Following the landmark works of Cand{\`e}s et al. and Donoho on the performance of ℓ1-minimization models for signal reconstruction, several authors demonstrated that certain nonconvex reconstruction models consistently outperform the convex ℓ1-model in practice at very low sampling rates despite the fact that no global minimum can be theoretically guaranteed. Nevertheless, there has been little theoretical investigation into the performance of these nonconvex models. In this paper, a notion of weak signal recoverability is introduced and the performance of nonconvex reconstruction models employing general concave metric priors is investigated under this model. The sufficient conditions for establishing weak signal recoverability are shown to substantially relax as the prior functional is parameterized to more closely resemble the targeted ℓ1 -model, offering new insight into the empirical performance of this general class of reconstruction methods. Examples of relaxation trends are shown for several different prior models.",
keywords = "Compressed sensing, Compressive sensing, Restricted isometry property, Signal recovery, Weak recoverability",
author = "Trazasko, {Joshua D} and Armando Manduca",
year = "2009",
doi = "10.1109/TSP.2009.2025979",
language = "English (US)",
volume = "57",
pages = "4347--4354",
journal = "IEEE Transactions on Signal Processing",
issn = "1053-587X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "11",

}

TY - JOUR

T1 - Relaxed conditions for sparse signal recovery with general concave priors

AU - Trazasko, Joshua D

AU - Manduca, Armando

PY - 2009

Y1 - 2009

N2 - The emerging theory of compressive or compressed sensing challenges the convention of modern digital signal processing by establishing that exact signal reconstruction is possible for many problems where the sampling rate falls well below the Nyquist limit. Following the landmark works of Candès et al. and Donoho on the performance of ℓ1-minimization models for signal reconstruction, several authors demonstrated that certain nonconvex reconstruction models consistently outperform the convex ℓ1-model in practice at very low sampling rates despite the fact that no global minimum can be theoretically guaranteed. Nevertheless, there has been little theoretical investigation into the performance of these nonconvex models. In this paper, a notion of weak signal recoverability is introduced and the performance of nonconvex reconstruction models employing general concave metric priors is investigated under this model. The sufficient conditions for establishing weak signal recoverability are shown to substantially relax as the prior functional is parameterized to more closely resemble the targeted ℓ1 -model, offering new insight into the empirical performance of this general class of reconstruction methods. Examples of relaxation trends are shown for several different prior models.

AB - The emerging theory of compressive or compressed sensing challenges the convention of modern digital signal processing by establishing that exact signal reconstruction is possible for many problems where the sampling rate falls well below the Nyquist limit. Following the landmark works of Candès et al. and Donoho on the performance of ℓ1-minimization models for signal reconstruction, several authors demonstrated that certain nonconvex reconstruction models consistently outperform the convex ℓ1-model in practice at very low sampling rates despite the fact that no global minimum can be theoretically guaranteed. Nevertheless, there has been little theoretical investigation into the performance of these nonconvex models. In this paper, a notion of weak signal recoverability is introduced and the performance of nonconvex reconstruction models employing general concave metric priors is investigated under this model. The sufficient conditions for establishing weak signal recoverability are shown to substantially relax as the prior functional is parameterized to more closely resemble the targeted ℓ1 -model, offering new insight into the empirical performance of this general class of reconstruction methods. Examples of relaxation trends are shown for several different prior models.

KW - Compressed sensing

KW - Compressive sensing

KW - Restricted isometry property

KW - Signal recovery

KW - Weak recoverability

UR - http://www.scopus.com/inward/record.url?scp=70350503590&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70350503590&partnerID=8YFLogxK

U2 - 10.1109/TSP.2009.2025979

DO - 10.1109/TSP.2009.2025979

M3 - Article

AN - SCOPUS:70350503590

VL - 57

SP - 4347

EP - 4354

JO - IEEE Transactions on Signal Processing

JF - IEEE Transactions on Signal Processing

SN - 1053-587X

IS - 11

ER -