Relationship of age to bone microstructure independent of areal bone mineral density

Kristy M. Nicks, Shreyasee Amin, Elizabeth J. Atkinson, B. Lawrence Riggs, L. Joseph Melton, Sundeep Khosla

Research output: Contribution to journalArticle

72 Citations (Scopus)

Abstract

Previous studies using dual-energy X-ray absorptiometry (DXA) have demonstrated that age is a major predictor of bone fragility and fracture risk independent of areal bone mineral density (aBMD). Although this aBMD-independent effect of age has been attributed to poor bone "quality," the structural basis for this remains unclear. Because high-resolution peripheral quantitative computed tomography (HRpQCT) can assess bone microarchitecture, we matched younger and older subjects for aBMD at the ultradistal radius and assessed for possible differences in trabecular or cortical microstructure by HRpQCT. From an age-stratified, random sample of community adults, 44 women aged <50 years (mean age 41.0 years) were matched to 44 women aged ≥50 years (mean age 62.7 years) by ultradistal radius aBMD (mean ± SEM, younger and older aBMD 0.475 ± 0.011 and 0.472 ± 0.011 g/cm 2, respectively), and 57 men aged <50 years (mean age 41.3 years) were matched to 57 men aged ≥50 years (mean age 68.1 years; younger and older aBMD both 0.571 ± 0.008 g/cm 2). In these matched subjects, there were no sex-specific differences in trabecular microstructural parameters. However, significant differences were noted in cortical microstructure (all p < 0.05): Older women and men had increased cortical porosity (by 91% and 56%, respectively), total cortical pore volume (by 77% and 61%, respectively), and mean cortical pore diameter (by 9% and 8%, respectively) compared with younger subjects. These findings indicate that younger and older women and men matched for DXA aBMD have similar trabecular microarchitecture but clearly different cortical microstructure, at least at an appendicular site represented by the radius. Further studies are needed to define the extent to which this deterioration in cortical microstructure contributes to the aBMD-independent effect of age on bone fragility and fracture risk at the distal radius and other sites of osteoporotic fractures.

Original languageEnglish (US)
Pages (from-to)637-644
Number of pages8
JournalJournal of Bone and Mineral Research
Volume27
Issue number3
DOIs
StatePublished - Mar 2012

Fingerprint

Bone Density
Bone and Bones
Bone Fractures
Photon Absorptiometry
Tomography
Osteoporotic Fractures
Porosity
Sex Characteristics

Keywords

  • AGING
  • OSTEOPOROSIS
  • POPULATION STUDIES

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine
  • Endocrinology, Diabetes and Metabolism

Cite this

Relationship of age to bone microstructure independent of areal bone mineral density. / Nicks, Kristy M.; Amin, Shreyasee; Atkinson, Elizabeth J.; Riggs, B. Lawrence; Melton, L. Joseph; Khosla, Sundeep.

In: Journal of Bone and Mineral Research, Vol. 27, No. 3, 03.2012, p. 637-644.

Research output: Contribution to journalArticle

Nicks, Kristy M. ; Amin, Shreyasee ; Atkinson, Elizabeth J. ; Riggs, B. Lawrence ; Melton, L. Joseph ; Khosla, Sundeep. / Relationship of age to bone microstructure independent of areal bone mineral density. In: Journal of Bone and Mineral Research. 2012 ; Vol. 27, No. 3. pp. 637-644.
@article{828f1b33a1054be891e4eb145df39283,
title = "Relationship of age to bone microstructure independent of areal bone mineral density",
abstract = "Previous studies using dual-energy X-ray absorptiometry (DXA) have demonstrated that age is a major predictor of bone fragility and fracture risk independent of areal bone mineral density (aBMD). Although this aBMD-independent effect of age has been attributed to poor bone {"}quality,{"} the structural basis for this remains unclear. Because high-resolution peripheral quantitative computed tomography (HRpQCT) can assess bone microarchitecture, we matched younger and older subjects for aBMD at the ultradistal radius and assessed for possible differences in trabecular or cortical microstructure by HRpQCT. From an age-stratified, random sample of community adults, 44 women aged <50 years (mean age 41.0 years) were matched to 44 women aged ≥50 years (mean age 62.7 years) by ultradistal radius aBMD (mean ± SEM, younger and older aBMD 0.475 ± 0.011 and 0.472 ± 0.011 g/cm 2, respectively), and 57 men aged <50 years (mean age 41.3 years) were matched to 57 men aged ≥50 years (mean age 68.1 years; younger and older aBMD both 0.571 ± 0.008 g/cm 2). In these matched subjects, there were no sex-specific differences in trabecular microstructural parameters. However, significant differences were noted in cortical microstructure (all p < 0.05): Older women and men had increased cortical porosity (by 91{\%} and 56{\%}, respectively), total cortical pore volume (by 77{\%} and 61{\%}, respectively), and mean cortical pore diameter (by 9{\%} and 8{\%}, respectively) compared with younger subjects. These findings indicate that younger and older women and men matched for DXA aBMD have similar trabecular microarchitecture but clearly different cortical microstructure, at least at an appendicular site represented by the radius. Further studies are needed to define the extent to which this deterioration in cortical microstructure contributes to the aBMD-independent effect of age on bone fragility and fracture risk at the distal radius and other sites of osteoporotic fractures.",
keywords = "AGING, OSTEOPOROSIS, POPULATION STUDIES",
author = "Nicks, {Kristy M.} and Shreyasee Amin and Atkinson, {Elizabeth J.} and Riggs, {B. Lawrence} and Melton, {L. Joseph} and Sundeep Khosla",
year = "2012",
month = "3",
doi = "10.1002/jbmr.1468",
language = "English (US)",
volume = "27",
pages = "637--644",
journal = "Journal of Bone and Mineral Research",
issn = "0884-0431",
publisher = "Wiley-Blackwell",
number = "3",

}

TY - JOUR

T1 - Relationship of age to bone microstructure independent of areal bone mineral density

AU - Nicks, Kristy M.

AU - Amin, Shreyasee

AU - Atkinson, Elizabeth J.

AU - Riggs, B. Lawrence

AU - Melton, L. Joseph

AU - Khosla, Sundeep

PY - 2012/3

Y1 - 2012/3

N2 - Previous studies using dual-energy X-ray absorptiometry (DXA) have demonstrated that age is a major predictor of bone fragility and fracture risk independent of areal bone mineral density (aBMD). Although this aBMD-independent effect of age has been attributed to poor bone "quality," the structural basis for this remains unclear. Because high-resolution peripheral quantitative computed tomography (HRpQCT) can assess bone microarchitecture, we matched younger and older subjects for aBMD at the ultradistal radius and assessed for possible differences in trabecular or cortical microstructure by HRpQCT. From an age-stratified, random sample of community adults, 44 women aged <50 years (mean age 41.0 years) were matched to 44 women aged ≥50 years (mean age 62.7 years) by ultradistal radius aBMD (mean ± SEM, younger and older aBMD 0.475 ± 0.011 and 0.472 ± 0.011 g/cm 2, respectively), and 57 men aged <50 years (mean age 41.3 years) were matched to 57 men aged ≥50 years (mean age 68.1 years; younger and older aBMD both 0.571 ± 0.008 g/cm 2). In these matched subjects, there were no sex-specific differences in trabecular microstructural parameters. However, significant differences were noted in cortical microstructure (all p < 0.05): Older women and men had increased cortical porosity (by 91% and 56%, respectively), total cortical pore volume (by 77% and 61%, respectively), and mean cortical pore diameter (by 9% and 8%, respectively) compared with younger subjects. These findings indicate that younger and older women and men matched for DXA aBMD have similar trabecular microarchitecture but clearly different cortical microstructure, at least at an appendicular site represented by the radius. Further studies are needed to define the extent to which this deterioration in cortical microstructure contributes to the aBMD-independent effect of age on bone fragility and fracture risk at the distal radius and other sites of osteoporotic fractures.

AB - Previous studies using dual-energy X-ray absorptiometry (DXA) have demonstrated that age is a major predictor of bone fragility and fracture risk independent of areal bone mineral density (aBMD). Although this aBMD-independent effect of age has been attributed to poor bone "quality," the structural basis for this remains unclear. Because high-resolution peripheral quantitative computed tomography (HRpQCT) can assess bone microarchitecture, we matched younger and older subjects for aBMD at the ultradistal radius and assessed for possible differences in trabecular or cortical microstructure by HRpQCT. From an age-stratified, random sample of community adults, 44 women aged <50 years (mean age 41.0 years) were matched to 44 women aged ≥50 years (mean age 62.7 years) by ultradistal radius aBMD (mean ± SEM, younger and older aBMD 0.475 ± 0.011 and 0.472 ± 0.011 g/cm 2, respectively), and 57 men aged <50 years (mean age 41.3 years) were matched to 57 men aged ≥50 years (mean age 68.1 years; younger and older aBMD both 0.571 ± 0.008 g/cm 2). In these matched subjects, there were no sex-specific differences in trabecular microstructural parameters. However, significant differences were noted in cortical microstructure (all p < 0.05): Older women and men had increased cortical porosity (by 91% and 56%, respectively), total cortical pore volume (by 77% and 61%, respectively), and mean cortical pore diameter (by 9% and 8%, respectively) compared with younger subjects. These findings indicate that younger and older women and men matched for DXA aBMD have similar trabecular microarchitecture but clearly different cortical microstructure, at least at an appendicular site represented by the radius. Further studies are needed to define the extent to which this deterioration in cortical microstructure contributes to the aBMD-independent effect of age on bone fragility and fracture risk at the distal radius and other sites of osteoporotic fractures.

KW - AGING

KW - OSTEOPOROSIS

KW - POPULATION STUDIES

UR - http://www.scopus.com/inward/record.url?scp=84857265197&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84857265197&partnerID=8YFLogxK

U2 - 10.1002/jbmr.1468

DO - 10.1002/jbmr.1468

M3 - Article

C2 - 22095490

AN - SCOPUS:84857265197

VL - 27

SP - 637

EP - 644

JO - Journal of Bone and Mineral Research

JF - Journal of Bone and Mineral Research

SN - 0884-0431

IS - 3

ER -