Reduced hind limb ischemia-reperfusion injury in Toll-like receptor-4 mutant mice is associated with decreased neutrophil extracellular traps

Rahmi Oklu, Hassan Albadawi, John E. Jones, Hyung Jin Yoo, Michael T. Watkins

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

Objective: Ischemia-reperfusion (IR) injury is a significant problem in the management of patients with acute limb ischemia. Despite rapid restoration of blood flow after technically successful open and endovascular revascularization, complications secondary to IR injury continue to occur and limit clinical success. Our aim was to create a murine model of hind limb IR injury to examine the role of Toll-like receptor-4 (TLR4) and to determine whether inactive TLR4 led to a decrease in the detection of neutrophil extracellular traps (NETs), which are known to be highly thrombogenic and may mediate microvascular injury. Methods: A calibrated tension tourniquet was applied to unilateral hind limb of wild-type (WT) and TLR4 receptor mutant (TLR4m) mice for 1.5 hours to induce ischemia and then removed to initiate reperfusion. At the end of 48 hours of reperfusion, mice were euthanized and hind limb tissue and serum specimens were collected for analysis. Hematoxylin and eosin-stained sections of hind limb skeletal muscle tissue were examined for fiber injury. For immunohistochemistry, mouse monoclonal antihistone H2A/H2B/DNA complex antibody to detect NETs and rabbit polyclonal antimyeloperoxidase antibody were used to identify infiltrating cells containing myeloperoxidase. Muscle adenosine triphosphate levels, nuclear factor (NF)-κB activity, the α-subunit of inhibitor of NF-κB light polypeptide gene enhancer, poly (adenosine diphosphate-ribose) polymerase activity, and inducible nitric oxide synthase expression were measured. Systemic levels of keratinocyte-derived chemokine, monocyte chemotactic protein-1, and vascular endothelial growth factor in the serum samples were also examined. Results: IR injury in the hind limb of WT mice demonstrated significant levels of muscle fiber injury, decreased energy substrates, increased NF-κB activation, decreased levels of α-subunit of inhibitor of NF-κB light polypeptide gene enhancer, increased inducible nitric oxide synthase expression, and increased poly (adenosine diphosphate-ribose) polymerase activity levels compared with the TLR4m samples. Additionally, there was marked decrease in the level of neutrophil and monocyte infiltration in the TLR4m mice, which corresponded to similar levels of decreased NET detection in the interstitial space and in microvascular thrombi. In situ nuclease treatment of WT tissue sections significantly diminished the level of NET immunostaining, demonstrating the specificity of the antibody to detect NETs and suggesting a potential role for nuclease treatment in IR injury. Conclusions: These results suggest a pivotal role for TLR4 in mediating hind limb IR injury and suggest that NETs may contribute to muscle fiber injury.

Original languageEnglish (US)
Pages (from-to)1627-1636
Number of pages10
JournalJournal of Vascular Surgery
Volume58
Issue number6
DOIs
StatePublished - Dec 2013
Externally publishedYes

Fingerprint

Toll-Like Receptor 4
Reperfusion Injury
Extremities
Poly Adenosine Diphosphate Ribose
Muscles
Wounds and Injuries
Nitric Oxide Synthase Type II
Reperfusion
Ischemia
Light
Tourniquets
Peptides
Antibody Specificity
Neutrophil Infiltration
Antibodies
Chemokine CCL2
Hematoxylin
Eosine Yellowish-(YS)
Mouse Tlr4 protein
Extracellular Traps

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Surgery

Cite this

Reduced hind limb ischemia-reperfusion injury in Toll-like receptor-4 mutant mice is associated with decreased neutrophil extracellular traps. / Oklu, Rahmi; Albadawi, Hassan; Jones, John E.; Yoo, Hyung Jin; Watkins, Michael T.

In: Journal of Vascular Surgery, Vol. 58, No. 6, 12.2013, p. 1627-1636.

Research output: Contribution to journalArticle

@article{13282bd395a4485ea13136453af4fad8,
title = "Reduced hind limb ischemia-reperfusion injury in Toll-like receptor-4 mutant mice is associated with decreased neutrophil extracellular traps",
abstract = "Objective: Ischemia-reperfusion (IR) injury is a significant problem in the management of patients with acute limb ischemia. Despite rapid restoration of blood flow after technically successful open and endovascular revascularization, complications secondary to IR injury continue to occur and limit clinical success. Our aim was to create a murine model of hind limb IR injury to examine the role of Toll-like receptor-4 (TLR4) and to determine whether inactive TLR4 led to a decrease in the detection of neutrophil extracellular traps (NETs), which are known to be highly thrombogenic and may mediate microvascular injury. Methods: A calibrated tension tourniquet was applied to unilateral hind limb of wild-type (WT) and TLR4 receptor mutant (TLR4m) mice for 1.5 hours to induce ischemia and then removed to initiate reperfusion. At the end of 48 hours of reperfusion, mice were euthanized and hind limb tissue and serum specimens were collected for analysis. Hematoxylin and eosin-stained sections of hind limb skeletal muscle tissue were examined for fiber injury. For immunohistochemistry, mouse monoclonal antihistone H2A/H2B/DNA complex antibody to detect NETs and rabbit polyclonal antimyeloperoxidase antibody were used to identify infiltrating cells containing myeloperoxidase. Muscle adenosine triphosphate levels, nuclear factor (NF)-κB activity, the α-subunit of inhibitor of NF-κB light polypeptide gene enhancer, poly (adenosine diphosphate-ribose) polymerase activity, and inducible nitric oxide synthase expression were measured. Systemic levels of keratinocyte-derived chemokine, monocyte chemotactic protein-1, and vascular endothelial growth factor in the serum samples were also examined. Results: IR injury in the hind limb of WT mice demonstrated significant levels of muscle fiber injury, decreased energy substrates, increased NF-κB activation, decreased levels of α-subunit of inhibitor of NF-κB light polypeptide gene enhancer, increased inducible nitric oxide synthase expression, and increased poly (adenosine diphosphate-ribose) polymerase activity levels compared with the TLR4m samples. Additionally, there was marked decrease in the level of neutrophil and monocyte infiltration in the TLR4m mice, which corresponded to similar levels of decreased NET detection in the interstitial space and in microvascular thrombi. In situ nuclease treatment of WT tissue sections significantly diminished the level of NET immunostaining, demonstrating the specificity of the antibody to detect NETs and suggesting a potential role for nuclease treatment in IR injury. Conclusions: These results suggest a pivotal role for TLR4 in mediating hind limb IR injury and suggest that NETs may contribute to muscle fiber injury.",
author = "Rahmi Oklu and Hassan Albadawi and Jones, {John E.} and Yoo, {Hyung Jin} and Watkins, {Michael T.}",
year = "2013",
month = "12",
doi = "10.1016/j.jvs.2013.02.241",
language = "English (US)",
volume = "58",
pages = "1627--1636",
journal = "Journal of Vascular Surgery",
issn = "0741-5214",
publisher = "Mosby Inc.",
number = "6",

}

TY - JOUR

T1 - Reduced hind limb ischemia-reperfusion injury in Toll-like receptor-4 mutant mice is associated with decreased neutrophil extracellular traps

AU - Oklu, Rahmi

AU - Albadawi, Hassan

AU - Jones, John E.

AU - Yoo, Hyung Jin

AU - Watkins, Michael T.

PY - 2013/12

Y1 - 2013/12

N2 - Objective: Ischemia-reperfusion (IR) injury is a significant problem in the management of patients with acute limb ischemia. Despite rapid restoration of blood flow after technically successful open and endovascular revascularization, complications secondary to IR injury continue to occur and limit clinical success. Our aim was to create a murine model of hind limb IR injury to examine the role of Toll-like receptor-4 (TLR4) and to determine whether inactive TLR4 led to a decrease in the detection of neutrophil extracellular traps (NETs), which are known to be highly thrombogenic and may mediate microvascular injury. Methods: A calibrated tension tourniquet was applied to unilateral hind limb of wild-type (WT) and TLR4 receptor mutant (TLR4m) mice for 1.5 hours to induce ischemia and then removed to initiate reperfusion. At the end of 48 hours of reperfusion, mice were euthanized and hind limb tissue and serum specimens were collected for analysis. Hematoxylin and eosin-stained sections of hind limb skeletal muscle tissue were examined for fiber injury. For immunohistochemistry, mouse monoclonal antihistone H2A/H2B/DNA complex antibody to detect NETs and rabbit polyclonal antimyeloperoxidase antibody were used to identify infiltrating cells containing myeloperoxidase. Muscle adenosine triphosphate levels, nuclear factor (NF)-κB activity, the α-subunit of inhibitor of NF-κB light polypeptide gene enhancer, poly (adenosine diphosphate-ribose) polymerase activity, and inducible nitric oxide synthase expression were measured. Systemic levels of keratinocyte-derived chemokine, monocyte chemotactic protein-1, and vascular endothelial growth factor in the serum samples were also examined. Results: IR injury in the hind limb of WT mice demonstrated significant levels of muscle fiber injury, decreased energy substrates, increased NF-κB activation, decreased levels of α-subunit of inhibitor of NF-κB light polypeptide gene enhancer, increased inducible nitric oxide synthase expression, and increased poly (adenosine diphosphate-ribose) polymerase activity levels compared with the TLR4m samples. Additionally, there was marked decrease in the level of neutrophil and monocyte infiltration in the TLR4m mice, which corresponded to similar levels of decreased NET detection in the interstitial space and in microvascular thrombi. In situ nuclease treatment of WT tissue sections significantly diminished the level of NET immunostaining, demonstrating the specificity of the antibody to detect NETs and suggesting a potential role for nuclease treatment in IR injury. Conclusions: These results suggest a pivotal role for TLR4 in mediating hind limb IR injury and suggest that NETs may contribute to muscle fiber injury.

AB - Objective: Ischemia-reperfusion (IR) injury is a significant problem in the management of patients with acute limb ischemia. Despite rapid restoration of blood flow after technically successful open and endovascular revascularization, complications secondary to IR injury continue to occur and limit clinical success. Our aim was to create a murine model of hind limb IR injury to examine the role of Toll-like receptor-4 (TLR4) and to determine whether inactive TLR4 led to a decrease in the detection of neutrophil extracellular traps (NETs), which are known to be highly thrombogenic and may mediate microvascular injury. Methods: A calibrated tension tourniquet was applied to unilateral hind limb of wild-type (WT) and TLR4 receptor mutant (TLR4m) mice for 1.5 hours to induce ischemia and then removed to initiate reperfusion. At the end of 48 hours of reperfusion, mice were euthanized and hind limb tissue and serum specimens were collected for analysis. Hematoxylin and eosin-stained sections of hind limb skeletal muscle tissue were examined for fiber injury. For immunohistochemistry, mouse monoclonal antihistone H2A/H2B/DNA complex antibody to detect NETs and rabbit polyclonal antimyeloperoxidase antibody were used to identify infiltrating cells containing myeloperoxidase. Muscle adenosine triphosphate levels, nuclear factor (NF)-κB activity, the α-subunit of inhibitor of NF-κB light polypeptide gene enhancer, poly (adenosine diphosphate-ribose) polymerase activity, and inducible nitric oxide synthase expression were measured. Systemic levels of keratinocyte-derived chemokine, monocyte chemotactic protein-1, and vascular endothelial growth factor in the serum samples were also examined. Results: IR injury in the hind limb of WT mice demonstrated significant levels of muscle fiber injury, decreased energy substrates, increased NF-κB activation, decreased levels of α-subunit of inhibitor of NF-κB light polypeptide gene enhancer, increased inducible nitric oxide synthase expression, and increased poly (adenosine diphosphate-ribose) polymerase activity levels compared with the TLR4m samples. Additionally, there was marked decrease in the level of neutrophil and monocyte infiltration in the TLR4m mice, which corresponded to similar levels of decreased NET detection in the interstitial space and in microvascular thrombi. In situ nuclease treatment of WT tissue sections significantly diminished the level of NET immunostaining, demonstrating the specificity of the antibody to detect NETs and suggesting a potential role for nuclease treatment in IR injury. Conclusions: These results suggest a pivotal role for TLR4 in mediating hind limb IR injury and suggest that NETs may contribute to muscle fiber injury.

UR - http://www.scopus.com/inward/record.url?scp=84888343739&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84888343739&partnerID=8YFLogxK

U2 - 10.1016/j.jvs.2013.02.241

DO - 10.1016/j.jvs.2013.02.241

M3 - Article

C2 - 23683381

AN - SCOPUS:84888343739

VL - 58

SP - 1627

EP - 1636

JO - Journal of Vascular Surgery

JF - Journal of Vascular Surgery

SN - 0741-5214

IS - 6

ER -