Recent developments in spectral-based ultrasonic tissue characterization

Andres Coila, Gabriela Torres, Julien Rouyer, Sara Aristizabal, Matthew Urban, Roberto Lavarello

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations


Echographic imaging depicts anatomical structure by displaying the magnitude of the envelope-detected backscattered echoes. However, ultrasonic radiofrequency data contains a richer information content that can be exploited for constructing images of intrinsic tissue properties. In particular, spectral-based ultrasonic tissue characterization techniques allow imaging parameters such as the backscatter coefficient and the attenuation coefficient. Even though this type of analysis has been explored for decades, several challenges ranging from technical algorithmic issues to the lack of widely validated, successful clinical applications have limited efforts directed towards these imaging modalities. In this article, recent developments are reviewed such as the use of plane wave compounding for improving imaging penetration, simultaneous estimation of backscatter coefficients and shear wave speed maps with potential to characterize kidney transplants, the use of the exponential form factor to model backscatter coefficients from tissues, and the use of regularized inversion methods for attenuation coefficient imaging in vivo.

Original languageEnglish (US)
Title of host publication2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018
PublisherIEEE Computer Society
Number of pages4
ISBN (Electronic)9781538636367
StatePublished - May 23 2018
Event15th IEEE International Symposium on Biomedical Imaging, ISBI 2018 - Washington, United States
Duration: Apr 4 2018Apr 7 2018

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452


Other15th IEEE International Symposium on Biomedical Imaging, ISBI 2018
Country/TerritoryUnited States


  • Attenuation coefficient
  • Backscatter coefficient
  • Ultrasonic tissue characterization

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Recent developments in spectral-based ultrasonic tissue characterization'. Together they form a unique fingerprint.

Cite this