Radiomics-based machine learning (ML) classifier for detection of type 2 diabetes on standard-of-care abdomen CTs: a proof-of-concept study

Darryl E. Wright, Sovanlal Mukherjee, Anurima Patra, Hala Khasawneh, Panagiotis Korfiatis, Garima Suman, Suresh T. Chari, Yogish C. Kudva, Timothy L. Kline, Ajit H. Goenka

Research output: Contribution to journalArticlepeer-review

Abstract

Purpose: To determine if pancreas radiomics-based AI model can detect the CT imaging signature of type 2 diabetes (T2D). Methods: Total 107 radiomic features were extracted from volumetrically segmented normal pancreas in 422 T2D patients and 456 age-matched controls. Dataset was randomly split into training (300 T2D, 300 control CTs) and test subsets (122 T2D, 156 control CTs). An XGBoost model trained on 10 features selected through top-K-based selection method and optimized through threefold cross-validation on training subset was evaluated on test subset. Results: Model correctly classified 73 (60%) T2D patients and 96 (62%) controls yielding F1-score, sensitivity, specificity, precision, and AUC of 0.57, 0.62, 0.61, 0.55, and 0.65, respectively. Model’s performance was equivalent across gender, CT slice thicknesses, and CT vendors (p values > 0.05). There was no difference between correctly classified versus misclassified patients in the mean (range) T2D duration [4.5 (0–15.4) versus 4.8 (0–15.7) years, p = 0.8], antidiabetic treatment [insulin (22% versus 18%), oral antidiabetics (10% versus 18%), both (41% versus 39%) (p > 0.05)], and treatment duration [5.4 (0–15) versus 5 (0–13) years, p = 0.4]. Conclusion: Pancreas radiomics-based AI model can detect the imaging signature of T2D. Further refinement and validation are needed to evaluate its potential for opportunistic T2D detection on millions of CTs that are performed annually.

Original languageEnglish (US)
Pages (from-to)3806-3816
Number of pages11
JournalAbdominal Radiology
Volume47
Issue number11
DOIs
StatePublished - Nov 2022

Keywords

  • Artificial intelligence
  • Pancreas
  • Type 2 diabetes mellitus
  • X-ray computed tomography

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Gastroenterology
  • Urology

Fingerprint

Dive into the research topics of 'Radiomics-based machine learning (ML) classifier for detection of type 2 diabetes on standard-of-care abdomen CTs: a proof-of-concept study'. Together they form a unique fingerprint.

Cite this