TY - JOUR
T1 - Quantitative Knee Arthrography in a Large Animal Model of Osteoarthritis Using Photon-Counting Detector CT
AU - Rajendran, Kishore
AU - Murthy, Naveen S.
AU - Frick, Matthew A.
AU - Tao, Shengzhen
AU - Unger, Mark D.
AU - Lavallee, Katherine T.
AU - Larson, Nicholas B.
AU - Leng, Shuai
AU - Maus, Timothy P.
AU - McCollough, Cynthia H.
N1 - Funding Information:
Conflicts of interest and source of funding: This study was funded by the Imaging Bio-marker Discovery Program, Mayo Clinic–Center for Individualized Medicine, and partially supported by the National Institutes of Health under award numbers R01 EB016966 and C06 RR018898. The content is solely the responsibility of the au-thors and does not necessarily represent the official views of the National Institutes of Health. The device described is a research scanner and not commercially avail-able. Dr McCollough receives industry funding from Siemens Healthcare. For the remaining authors, none were declared.
Publisher Copyright:
© Wolters Kluwer Health, Inc. All rights reserved.
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Objective The aim of this study was to grade cartilage damage in a swine model of osteoarthritis using a whole-body photon-counting detector (PCD) CT. Materials and Methods A multienergy phantom containing gadolinium (Gd) (2, 4, 8, and 16 mg/mL) and hydroxyapatite (200 and 400 mg/cc) was scanned using a PCD-CT system (48 × 0.25 mm collimation, 80 kV, 800 mAs, D50 reconstruction kernel) to serve as calibration for material decomposition and to assess quantification accuracy. Osteoarthritis was induced in Yucatan miniswine (n = 8) using 1.2 mg monoiodoacetate (MIA) injected into a randomized knee, whereas the contralateral control knee received saline. Twenty-one days later, a contrast bolus (gadoterate meglumine, 4 mL/knee) was intra-articularly administered into both knees. The knees were simultaneously scanned on the PCD-CT system (48 × 0.25 mm collimation, 80 kV, 800 mAs). Multienergy images were reconstructed with a sharp "V71"kernel and a quantitative "D50"kernel. Image denoising was applied to the V71 images before grading cartilage damage, and an iterative material decomposition technique was applied to D50 images to generate the Gd maps. Two radiologists blinded to the knee injection status graded the cartilage integrity based on a modified International Cartilage Repair Society scoring system. Histology was performed on excised cartilage using methylene blue/basic fuchsin. Statistical analysis of grade distribution was performed using an exact test of omnibus symmetry with P < 0.05 considered significant. Results Material decomposed images from the multienergy phantom scan showed delineation and quantification of Gd and hydroxyapatite with a root-mean-squared error of 0.3 mg/mL and 18.4 mg/cc, respectively. In the animal cohort, the radiologists reported chondromalacia in the MIA knees with International Cartilage Repair Society scores ranging from grade 1 (cartilage heterogeneity, n = 4 knees) to grade 3 (up to 100% cartilage loss, n = 4 knees). Grade 1 was characterized by cartilage heterogeneity and increased joint space in the patellofemoral compartment, whereas grade 3 was characterized by cartilage erosion and bone-on-bone articulation in the patellofemoral compartment. All control knees were scored as grade 0 (normal cartilage). Significant difference (P = 0.004) was observed in the grade distribution between the MIA and control knees. Gross examination of the excised knees showed cartilage lesions in the grade 3 MIA knees. The Gd maps from material decomposition showed lower contrast levels in the joint space of the MIA knee compared with the contralateral control knee due to joint effusion. Histology revealed chondrocyte loss in the MIA knee cartilage confirming the chondrotoxic effects of MIA on cartilage matrix. Conclusions We demonstrated a high-resolution and quantitative PCD-CT arthrography technique for grading cartilage damage in a large animal model of osteoarthritis. Photon-counting detector CT offers simultaneous high-resolution and multienergy imaging capabilities that allowed morphological assessment of cartilage loss and quantification of contrast levels in the joint as a marker of joint disease. Cartilage damage in the MIA knees was graded using PCD-CT images, and the image-based findings were further confirmed using histology and gross examination of the excised knees.
AB - Objective The aim of this study was to grade cartilage damage in a swine model of osteoarthritis using a whole-body photon-counting detector (PCD) CT. Materials and Methods A multienergy phantom containing gadolinium (Gd) (2, 4, 8, and 16 mg/mL) and hydroxyapatite (200 and 400 mg/cc) was scanned using a PCD-CT system (48 × 0.25 mm collimation, 80 kV, 800 mAs, D50 reconstruction kernel) to serve as calibration for material decomposition and to assess quantification accuracy. Osteoarthritis was induced in Yucatan miniswine (n = 8) using 1.2 mg monoiodoacetate (MIA) injected into a randomized knee, whereas the contralateral control knee received saline. Twenty-one days later, a contrast bolus (gadoterate meglumine, 4 mL/knee) was intra-articularly administered into both knees. The knees were simultaneously scanned on the PCD-CT system (48 × 0.25 mm collimation, 80 kV, 800 mAs). Multienergy images were reconstructed with a sharp "V71"kernel and a quantitative "D50"kernel. Image denoising was applied to the V71 images before grading cartilage damage, and an iterative material decomposition technique was applied to D50 images to generate the Gd maps. Two radiologists blinded to the knee injection status graded the cartilage integrity based on a modified International Cartilage Repair Society scoring system. Histology was performed on excised cartilage using methylene blue/basic fuchsin. Statistical analysis of grade distribution was performed using an exact test of omnibus symmetry with P < 0.05 considered significant. Results Material decomposed images from the multienergy phantom scan showed delineation and quantification of Gd and hydroxyapatite with a root-mean-squared error of 0.3 mg/mL and 18.4 mg/cc, respectively. In the animal cohort, the radiologists reported chondromalacia in the MIA knees with International Cartilage Repair Society scores ranging from grade 1 (cartilage heterogeneity, n = 4 knees) to grade 3 (up to 100% cartilage loss, n = 4 knees). Grade 1 was characterized by cartilage heterogeneity and increased joint space in the patellofemoral compartment, whereas grade 3 was characterized by cartilage erosion and bone-on-bone articulation in the patellofemoral compartment. All control knees were scored as grade 0 (normal cartilage). Significant difference (P = 0.004) was observed in the grade distribution between the MIA and control knees. Gross examination of the excised knees showed cartilage lesions in the grade 3 MIA knees. The Gd maps from material decomposition showed lower contrast levels in the joint space of the MIA knee compared with the contralateral control knee due to joint effusion. Histology revealed chondrocyte loss in the MIA knee cartilage confirming the chondrotoxic effects of MIA on cartilage matrix. Conclusions We demonstrated a high-resolution and quantitative PCD-CT arthrography technique for grading cartilage damage in a large animal model of osteoarthritis. Photon-counting detector CT offers simultaneous high-resolution and multienergy imaging capabilities that allowed morphological assessment of cartilage loss and quantification of contrast levels in the joint as a marker of joint disease. Cartilage damage in the MIA knees was graded using PCD-CT images, and the image-based findings were further confirmed using histology and gross examination of the excised knees.
KW - X-ray computed tomography
KW - arthrography
KW - contrast media
KW - experimental animal models
KW - monoiodoacetate
KW - osteoarthritis
KW - radiologic phantoms
UR - http://www.scopus.com/inward/record.url?scp=85084273016&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084273016&partnerID=8YFLogxK
U2 - 10.1097/RLI.0000000000000648
DO - 10.1097/RLI.0000000000000648
M3 - Article
C2 - 31985604
AN - SCOPUS:85084273016
SN - 0020-9996
VL - 55
SP - 349
EP - 356
JO - Investigative Radiology
JF - Investigative Radiology
IS - 6
ER -