Quantitative evaluation of movement and strength of the upper limb after transection of the C-7 nerve: Is it possible in an animal model? Laboratory investigation

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Object. Contralateral C-7 nerve transfer has been used clinically for more than 20 years. The increased interest in studies of transfer effectiveness at different target muscles, posttransfer cocontraction, and brain plasticity has prompted the need for an animal model. In addition to the conventional electrophysiological, histomorphometric, and biomechanical evaluation modalities, quantitative functional and behavioral evaluation will be crucial in applying this kind of model. The aim of this study was to establish a C-7 transection animal model and quantify the changes in upper-limb joint movement and muscle power. Methods. A C-7 nerve transection model was created in Sprague-Dawley rats, the brachial plexus of which resembles the human brachial plexus. The impact of C-7 transection on donor limb function - namely, strength, movement, and coordination - was evaluated in 6 rats. Muscle strength (power reported in g) was measured as a grasping task. The active range of motion (ROM; angle reported in °) of the elbow, wrist, and metacarpophalangeal joints was quantified by computerized video motion analysis. Antiresistance coordinated movement (speed reported in seconds) was assessed by the vertical rope-climbing test. These tests were carried out before surgery and at 2, 4, 6, 8, 10, 14, 21, and 28 days after C-7 transection. Repeated-measures 1-way analysis of variance was applied for statistical analysis. When the overall probability value was < 0.05, the Dunnett multiple-comparison posttest was used to compare postoperative values with preoperative baseline values. Results. Immediately after C-7 transection, the mean ± SD grip strength declined from 378.50 ± 20.55 g to 297.77 ± 15.04 g. Active elbow extension was impaired, as shown by a significant decrease of the elbow extension angle. The speed of vertical rope climbing was also reduced. Elbow flexion, wrist flexion and extension, and metacarpophalangeal joint flexion and extension were not impaired. Fast recovery of motor function was observed thereafter. Grip strength, range of active elbow extension, and speed of rope climbing returned to baseline values at postoperative Days 4, 8, and 8, respectively. Conclusions. The ROM and muscle strength of the upper limb in rats can be measured quantitatively in studies that simulate clinical situations. Application of these functional evaluation modalities in a C-7 nerve transection rat model confirmed that transection of C-7 causes only temporary functional dysfunction to the donor limb. The results obtained in this animal model mimic those seen in humans who undergo contralateral C-7 nerve harvesting.

Original languageEnglish (US)
Pages (from-to)102-110
Number of pages9
JournalJournal of Neurosurgery: Spine
Volume10
Issue number2
DOIs
StatePublished - Feb 2009

Fingerprint

Elbow
Upper Extremity
Animal Models
Metacarpophalangeal Joint
Brachial Plexus
Muscle Strength
Hand Strength
Extremities
Nerve Transfer
Wrist Joint
Elbow Joint
Muscles
Recovery of Function
Articular Range of Motion
Wrist
Sprague Dawley Rats
Analysis of Variance
Joints
Brain

Keywords

  • Brachial plexus
  • C-7 nerve
  • Motion analysis
  • Nerve transfer
  • Rat

ASJC Scopus subject areas

  • Clinical Neurology
  • Surgery
  • Neurology

Cite this

@article{8d3ed54c30d445bdb4099ef225352c67,
title = "Quantitative evaluation of movement and strength of the upper limb after transection of the C-7 nerve: Is it possible in an animal model? Laboratory investigation",
abstract = "Object. Contralateral C-7 nerve transfer has been used clinically for more than 20 years. The increased interest in studies of transfer effectiveness at different target muscles, posttransfer cocontraction, and brain plasticity has prompted the need for an animal model. In addition to the conventional electrophysiological, histomorphometric, and biomechanical evaluation modalities, quantitative functional and behavioral evaluation will be crucial in applying this kind of model. The aim of this study was to establish a C-7 transection animal model and quantify the changes in upper-limb joint movement and muscle power. Methods. A C-7 nerve transection model was created in Sprague-Dawley rats, the brachial plexus of which resembles the human brachial plexus. The impact of C-7 transection on donor limb function - namely, strength, movement, and coordination - was evaluated in 6 rats. Muscle strength (power reported in g) was measured as a grasping task. The active range of motion (ROM; angle reported in °) of the elbow, wrist, and metacarpophalangeal joints was quantified by computerized video motion analysis. Antiresistance coordinated movement (speed reported in seconds) was assessed by the vertical rope-climbing test. These tests were carried out before surgery and at 2, 4, 6, 8, 10, 14, 21, and 28 days after C-7 transection. Repeated-measures 1-way analysis of variance was applied for statistical analysis. When the overall probability value was < 0.05, the Dunnett multiple-comparison posttest was used to compare postoperative values with preoperative baseline values. Results. Immediately after C-7 transection, the mean ± SD grip strength declined from 378.50 ± 20.55 g to 297.77 ± 15.04 g. Active elbow extension was impaired, as shown by a significant decrease of the elbow extension angle. The speed of vertical rope climbing was also reduced. Elbow flexion, wrist flexion and extension, and metacarpophalangeal joint flexion and extension were not impaired. Fast recovery of motor function was observed thereafter. Grip strength, range of active elbow extension, and speed of rope climbing returned to baseline values at postoperative Days 4, 8, and 8, respectively. Conclusions. The ROM and muscle strength of the upper limb in rats can be measured quantitatively in studies that simulate clinical situations. Application of these functional evaluation modalities in a C-7 nerve transection rat model confirmed that transection of C-7 causes only temporary functional dysfunction to the donor limb. The results obtained in this animal model mimic those seen in humans who undergo contralateral C-7 nerve harvesting.",
keywords = "Brachial plexus, C-7 nerve, Motion analysis, Nerve transfer, Rat",
author = "Wang, {Huan D} and Spinner, {Robert J.} and Windebank, {Anthony John}",
year = "2009",
month = "2",
doi = "10.3171/2008.10.SPI08468",
language = "English (US)",
volume = "10",
pages = "102--110",
journal = "Journal of Neurosurgery: Spine",
issn = "1547-5654",
publisher = "American Association of Neurological Surgeons",
number = "2",

}

TY - JOUR

T1 - Quantitative evaluation of movement and strength of the upper limb after transection of the C-7 nerve

T2 - Is it possible in an animal model? Laboratory investigation

AU - Wang, Huan D

AU - Spinner, Robert J.

AU - Windebank, Anthony John

PY - 2009/2

Y1 - 2009/2

N2 - Object. Contralateral C-7 nerve transfer has been used clinically for more than 20 years. The increased interest in studies of transfer effectiveness at different target muscles, posttransfer cocontraction, and brain plasticity has prompted the need for an animal model. In addition to the conventional electrophysiological, histomorphometric, and biomechanical evaluation modalities, quantitative functional and behavioral evaluation will be crucial in applying this kind of model. The aim of this study was to establish a C-7 transection animal model and quantify the changes in upper-limb joint movement and muscle power. Methods. A C-7 nerve transection model was created in Sprague-Dawley rats, the brachial plexus of which resembles the human brachial plexus. The impact of C-7 transection on donor limb function - namely, strength, movement, and coordination - was evaluated in 6 rats. Muscle strength (power reported in g) was measured as a grasping task. The active range of motion (ROM; angle reported in °) of the elbow, wrist, and metacarpophalangeal joints was quantified by computerized video motion analysis. Antiresistance coordinated movement (speed reported in seconds) was assessed by the vertical rope-climbing test. These tests were carried out before surgery and at 2, 4, 6, 8, 10, 14, 21, and 28 days after C-7 transection. Repeated-measures 1-way analysis of variance was applied for statistical analysis. When the overall probability value was < 0.05, the Dunnett multiple-comparison posttest was used to compare postoperative values with preoperative baseline values. Results. Immediately after C-7 transection, the mean ± SD grip strength declined from 378.50 ± 20.55 g to 297.77 ± 15.04 g. Active elbow extension was impaired, as shown by a significant decrease of the elbow extension angle. The speed of vertical rope climbing was also reduced. Elbow flexion, wrist flexion and extension, and metacarpophalangeal joint flexion and extension were not impaired. Fast recovery of motor function was observed thereafter. Grip strength, range of active elbow extension, and speed of rope climbing returned to baseline values at postoperative Days 4, 8, and 8, respectively. Conclusions. The ROM and muscle strength of the upper limb in rats can be measured quantitatively in studies that simulate clinical situations. Application of these functional evaluation modalities in a C-7 nerve transection rat model confirmed that transection of C-7 causes only temporary functional dysfunction to the donor limb. The results obtained in this animal model mimic those seen in humans who undergo contralateral C-7 nerve harvesting.

AB - Object. Contralateral C-7 nerve transfer has been used clinically for more than 20 years. The increased interest in studies of transfer effectiveness at different target muscles, posttransfer cocontraction, and brain plasticity has prompted the need for an animal model. In addition to the conventional electrophysiological, histomorphometric, and biomechanical evaluation modalities, quantitative functional and behavioral evaluation will be crucial in applying this kind of model. The aim of this study was to establish a C-7 transection animal model and quantify the changes in upper-limb joint movement and muscle power. Methods. A C-7 nerve transection model was created in Sprague-Dawley rats, the brachial plexus of which resembles the human brachial plexus. The impact of C-7 transection on donor limb function - namely, strength, movement, and coordination - was evaluated in 6 rats. Muscle strength (power reported in g) was measured as a grasping task. The active range of motion (ROM; angle reported in °) of the elbow, wrist, and metacarpophalangeal joints was quantified by computerized video motion analysis. Antiresistance coordinated movement (speed reported in seconds) was assessed by the vertical rope-climbing test. These tests were carried out before surgery and at 2, 4, 6, 8, 10, 14, 21, and 28 days after C-7 transection. Repeated-measures 1-way analysis of variance was applied for statistical analysis. When the overall probability value was < 0.05, the Dunnett multiple-comparison posttest was used to compare postoperative values with preoperative baseline values. Results. Immediately after C-7 transection, the mean ± SD grip strength declined from 378.50 ± 20.55 g to 297.77 ± 15.04 g. Active elbow extension was impaired, as shown by a significant decrease of the elbow extension angle. The speed of vertical rope climbing was also reduced. Elbow flexion, wrist flexion and extension, and metacarpophalangeal joint flexion and extension were not impaired. Fast recovery of motor function was observed thereafter. Grip strength, range of active elbow extension, and speed of rope climbing returned to baseline values at postoperative Days 4, 8, and 8, respectively. Conclusions. The ROM and muscle strength of the upper limb in rats can be measured quantitatively in studies that simulate clinical situations. Application of these functional evaluation modalities in a C-7 nerve transection rat model confirmed that transection of C-7 causes only temporary functional dysfunction to the donor limb. The results obtained in this animal model mimic those seen in humans who undergo contralateral C-7 nerve harvesting.

KW - Brachial plexus

KW - C-7 nerve

KW - Motion analysis

KW - Nerve transfer

KW - Rat

UR - http://www.scopus.com/inward/record.url?scp=65249180864&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65249180864&partnerID=8YFLogxK

U2 - 10.3171/2008.10.SPI08468

DO - 10.3171/2008.10.SPI08468

M3 - Article

C2 - 19278322

AN - SCOPUS:65249180864

VL - 10

SP - 102

EP - 110

JO - Journal of Neurosurgery: Spine

JF - Journal of Neurosurgery: Spine

SN - 1547-5654

IS - 2

ER -