PS-341 (bortezomib) induces lysosomal cathepsin B release and a caspase-2-dependent mitochondrial permeabilization and apoptosis in human pancreatic cancer cells

Bonnie H.Y. Yeung, Der Chen Huang, Frank A. Sinicrope

Research output: Contribution to journalArticlepeer-review

69 Scopus citations

Abstract

PS-341 (bortezomib) is a potent and reversible proteosome inhibitor that functions to degrade intracellular polyubiquitinated proteins. PS-341 induces apoptosis and has shown broad antitumor activity with selectivity for transformed cells. We studied the effect of PS-341 on lysosomal and mitochondrial permeabilization, including the role of caspase-2 activation in apoptosis induction in the BxPC-3 human pancreatic carcinoma cell line. PS-341 induced a dose-dependent apoptosis in association with reactive oxygen species generation and cleavage of caspase-2 to its 33- and 14-kDa fragments. PS-341 disrupted lysosomes with redistribution of cathepsin B to the cytosol, as shown using fluorescence confocal microscopy, that was blocked by the free radical scavenger tiron but not by a caspase-2 inhibitor (benzyloxycarbonyl (Z)-VDVAD- fluoromethyl ketone (FMK)). PS-341-induced caspase-2 activation was attenuated by a selective pharmacological inhibitor of cathepsin B (R-3032), suggesting that cathepsin B release occurs upstream of caspase-2. PS-341-induced mitochondrial depolarization was attenuated by Z-VDVAD-FMK, tiron, and an inhibitor of the mitochondrial permeability transition pore (bongkrekic acid). Regulation of mitochondrial permeability by caspase-2 was confirmed using caspase-2 small interfering RNA. PS-341-induced cytochrome c release and phosphatidylserine externalization were attenuated by Z-VDVAD-FMK and partially by R-3032. PS-341 activated the BH3-only proteins Bik and Bim and down-regulated Bcl-2 and Bcl-xL mRNA and protein expression. Taken together, PS-341 induces lysosomal cathepsin B redistribution upstream of caspase-2. Caspase-2 activation regulates PS-341-induced mitochondrial depolarization and apoptosis, suggesting that caspase-2 can serve as a link between lysosomal and mitochondrial permeabilization.

Original languageEnglish (US)
Pages (from-to)11923-11932
Number of pages10
JournalJournal of Biological Chemistry
Volume281
Issue number17
DOIs
StatePublished - Apr 28 2006

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'PS-341 (bortezomib) induces lysosomal cathepsin B release and a caspase-2-dependent mitochondrial permeabilization and apoptosis in human pancreatic cancer cells'. Together they form a unique fingerprint.

Cite this