TY - JOUR
T1 - Probiotics for prevention of urinary stones
AU - Lieske, John C.
N1 - Funding Information:
Studies were partially supported by (I) the Rare Kidney Stone Consortium (U54KD083908), a part of the Rare Diseases Clinical Research Network (RDCRN), an initiative of the Office of Rare Diseases Research (ORDR), National Center for Advancing Translational Sciences (NCATS). This consortium is funded through a collaboration between NCATS, and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK); (II) Mayo Clinic O'Brien Urology Research Center, DK100227; (III) NIH grant AT R21AT2534; (IV) V.S.L. Pharmaceuticals Inc., Gaithersburg, MD; and (V) the Mayo Foundation. The funding sources had no role in the study design, conduct, or reporting.
Publisher Copyright:
© Annals of Translational Medicine. All rights reserved.
PY - 2017/1
Y1 - 2017/1
N2 - Background: Urinary supersaturation is one key determinant of calcium oxalate (CaOx) urinary stone formation, and urinary excretions of oxalate and citrate are two key determinants. Each is influenced by gastrointestinal processes. Methods: Open label and randomized placebo studies have examined the effect of oral probiotic preparations on urinary supersaturation and oxalate excretion. Cross sectional studies in humans have studied the association of Oxalobacter formigenes colonization status and urinary oxalate excretion and prevalence of urinary stones. The intestinal microbiome of representative animals adapted to a high oxalate diet has been defined. Results: The fecal content of O. formigenes, the best studied oxalate-degrader, varies depending on stone status. However, trials with probiotics designed to degrade oxalate including those containing O. formigenes, Lactobacillus, and/or Bifidobacterium spp., have been disappointing. Multiple intestinal segments of animals on a high oxalate diet contains diverse communities of microorganisms that can function together to degrade and detoxify a large oxalate load. Conclusions: Although the intestinal microbiome seems likely to play a role to modify gastrointestinal absorption of lithogenic substances and hence urinary stone risk, whether we can develop tools to manipulate it and decrease this kidney stone risk remains to be determined.
AB - Background: Urinary supersaturation is one key determinant of calcium oxalate (CaOx) urinary stone formation, and urinary excretions of oxalate and citrate are two key determinants. Each is influenced by gastrointestinal processes. Methods: Open label and randomized placebo studies have examined the effect of oral probiotic preparations on urinary supersaturation and oxalate excretion. Cross sectional studies in humans have studied the association of Oxalobacter formigenes colonization status and urinary oxalate excretion and prevalence of urinary stones. The intestinal microbiome of representative animals adapted to a high oxalate diet has been defined. Results: The fecal content of O. formigenes, the best studied oxalate-degrader, varies depending on stone status. However, trials with probiotics designed to degrade oxalate including those containing O. formigenes, Lactobacillus, and/or Bifidobacterium spp., have been disappointing. Multiple intestinal segments of animals on a high oxalate diet contains diverse communities of microorganisms that can function together to degrade and detoxify a large oxalate load. Conclusions: Although the intestinal microbiome seems likely to play a role to modify gastrointestinal absorption of lithogenic substances and hence urinary stone risk, whether we can develop tools to manipulate it and decrease this kidney stone risk remains to be determined.
KW - Calcium oxalate (CaOx)
KW - Lactobacilli
KW - Microbiome
KW - Nephrolithiasis
KW - Oxalobacter formigenes
UR - http://www.scopus.com/inward/record.url?scp=85010635895&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85010635895&partnerID=8YFLogxK
U2 - 10.21037/atm.2016.11.86
DO - 10.21037/atm.2016.11.86
M3 - Article
AN - SCOPUS:85010635895
SN - 2305-5839
VL - 5
JO - Annals of Translational Medicine
JF - Annals of Translational Medicine
IS - 2
M1 - 29
ER -