Pre-reconstruction three-material decomposition in dual-energy CT

Research output: Chapter in Book/Report/Conference proceedingConference contribution

18 Scopus citations

Abstract

It is of clinical interest to quantify the concentration of materials in a three-component mixture with known chemical compositions, such as bone-mineral density (BMD) in a trabecular bone composed of calcium hydroxyappitite (CaHA), yellow- and red-marrow, and iron content in the liver composed of soft tissue, fat, and iron. Both pre- and postreconstruction dual-energy CT methods have been used to achieve this goal. The pre-reconstruction method is more accurate due to the elimination of beam-hardening artifacts. After obtaining the equivalent densities of the two basis materials, however, it is unclear how to accurately estimate the concentration of each material in the presence of the third material in the mixture. In this work, we present a pre-reconstruction three-material decomposition method in dualenergy CT to quantify the concentration of each material in a three-component mixture with known chemical compositions. This method employs a specific physical constraint on the equivalent densities of the two basis materials obtained from the conventional basis-material decomposition. We evaluated this method using simulation studies on two types of three-component mixtures: bone-water-fat and Iron-water-CaHA. The results demonstrated that an accurate estimation of the concentration for each material can be achieved with the proposed method.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2009
Subtitle of host publicationPhysics of Medical Imaging
StatePublished - Jun 15 2009
EventMedical Imaging 2009: Physics of Medical Imaging - Lake Buena Vista, FL, United States
Duration: Feb 9 2009Feb 12 2009

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume7258
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2009: Physics of Medical Imaging
CountryUnited States
CityLake Buena Vista, FL
Period2/9/092/12/09

Keywords

  • Basis material decomposition
  • CT
  • Dual-energy CT
  • Quantitative CT

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Pre-reconstruction three-material decomposition in dual-energy CT'. Together they form a unique fingerprint.

  • Cite this

    Yu, L., Liu, X., & McCollough, C. H. (2009). Pre-reconstruction three-material decomposition in dual-energy CT. In Medical Imaging 2009: Physics of Medical Imaging [72583V] (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 7258).