TY - JOUR
T1 - Potential role of decoy B7-H4 in the pathogenesis of rheumatoid arthritis
T2 - A mouse model informed by clinical data
AU - Azuma, Takeshi
AU - Zhu, Gefeng
AU - Xu, Haiying
AU - Rietz, A. Cecilia
AU - Drake, Charles G.
AU - Matteson, Eric L.
AU - Chen, Lieping
PY - 2009/10
Y1 - 2009/10
N2 - Background: A pathogenic hallmark of rheumatoid arthritis (RA) is persistent inflammatory responses in target tissues and organs. Immune responses mediated by T cells and autoantibodies are known to play pivotal roles. A possible interpretation for this observation is a loss of negative regulation of autoimmune responses. Here we sought to investigate whether B7-H4, a cell surface inhibitory molecule of the B7-CD28 signaling pathway, may play a role in the pathogenesis of RA. Methods and Findings: In a cross-sectional study of a clinical convenience sample using monoclonal antibodies against human B7-H4 molecules, we detected high levels of the soluble form of B7-H4 (sH4) in the sera of 65% of patients with RA (n = 68) versus only 13% of healthy donors (n = 24). Elevated sH4 was associated with an increased disease severity score (DAS28) in a cross-sectional analysis. In a mouse model of RA, transgenic expression of sH4 or genetic deletion of B7-H4 accelerated the progression of collagen-induced arthritis, accompanied by enhanced T and B cell-mediated autoimmune responses as well as increased activity of neutrophils. Expression in vivo of an agonist, a B7-H4-immunoglobulin Fc fusion protein, profoundly suppressed disease progression in the mouse model. Conclusions: Our findings in mice indicate that sH4 acts as a decoy molecule to block the inhibitory functions of cell-surface B7-H4, leading to exacerbation of collagen-induced arthritis. If the preliminary correlation between sH4 levels and disease activity in patients with RA can be confirmed to reflect a similar mechanism, these findings suggest a novel target for treatment approaches.
AB - Background: A pathogenic hallmark of rheumatoid arthritis (RA) is persistent inflammatory responses in target tissues and organs. Immune responses mediated by T cells and autoantibodies are known to play pivotal roles. A possible interpretation for this observation is a loss of negative regulation of autoimmune responses. Here we sought to investigate whether B7-H4, a cell surface inhibitory molecule of the B7-CD28 signaling pathway, may play a role in the pathogenesis of RA. Methods and Findings: In a cross-sectional study of a clinical convenience sample using monoclonal antibodies against human B7-H4 molecules, we detected high levels of the soluble form of B7-H4 (sH4) in the sera of 65% of patients with RA (n = 68) versus only 13% of healthy donors (n = 24). Elevated sH4 was associated with an increased disease severity score (DAS28) in a cross-sectional analysis. In a mouse model of RA, transgenic expression of sH4 or genetic deletion of B7-H4 accelerated the progression of collagen-induced arthritis, accompanied by enhanced T and B cell-mediated autoimmune responses as well as increased activity of neutrophils. Expression in vivo of an agonist, a B7-H4-immunoglobulin Fc fusion protein, profoundly suppressed disease progression in the mouse model. Conclusions: Our findings in mice indicate that sH4 acts as a decoy molecule to block the inhibitory functions of cell-surface B7-H4, leading to exacerbation of collagen-induced arthritis. If the preliminary correlation between sH4 levels and disease activity in patients with RA can be confirmed to reflect a similar mechanism, these findings suggest a novel target for treatment approaches.
UR - http://www.scopus.com/inward/record.url?scp=70449100854&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70449100854&partnerID=8YFLogxK
U2 - 10.1371/journal.pmed.1000166
DO - 10.1371/journal.pmed.1000166
M3 - Article
C2 - 19841745
AN - SCOPUS:70449100854
SN - 1549-1277
VL - 6
JO - PLoS medicine
JF - PLoS medicine
IS - 10
M1 - e1000166
ER -