Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study

Cyril Pottier, Xiaolai Zhou, Ralph B. Perkerson, Matt Baker, Gregory D. Jenkins, Daniel J. Serie, Roberta Ghidoni, Luisa Benussi, Giuliano Binetti, Adolfo López de Munain, Miren Zulaica, Fermin Moreno, Isabelle Le Ber, Florence Pasquier, Didier Hannequin, Raquel Sánchez-Valle, Anna Antonell, Albert Lladó, Tammee M. Parsons, Ni Cole A. FinchElizabeth C. Finger, Carol F. Lippa, Edward D. Huey, Manuela Neumann, Peter Heutink, Matthis Synofzik, Carlo Wilke, Robert A. Rissman, Jaroslaw Slawek, Emilia Sitek, Peter Johannsen, Jørgen E. Nielsen, Yingxue Ren, Marka van Blitterswijk, Mariely DeJesus-Hernandez, Elizabeth Christopher, Melissa E. Murray, Kevin F. Bieniek, Bret M. Evers, Camilla Ferrari, Sara Rollinson, Anna Richardson, Elio Scarpini, Giorgio G. Fumagalli, Alessandro Padovani, John Hardy, Parastoo Momeni, Raffaele Ferrari, Francesca Frangipane, Raffaele Maletta, Maria Anfossi, Maura Gallo, Leonard Petrucelli, Eun Ran Suh, Oscar L. Lopez, Tsz H. Wong, Jeroen G.J. van Rooij, Harro Seelaar, Simon Mead, Richard J. Caselli, Eric M. Reiman, Marwan Noel Sabbagh, Mads Kjolby, Anders Nykjaer, Anna M. Karydas, Adam L. Boxer, Lea T. Grinberg, Jordan Grafman, Salvatore Spina, Adrian Oblak, M. Marsel Mesulam, Sandra Weintraub, Changiz Geula, John R. Hodges, Olivier Piguet, William S. Brooks, David J. Irwin, John Q. Trojanowski, Edward B. Lee, Keith A. Josephs, Joseph E. Parisi, Nilüfer Ertekin-Taner, David S. Knopman, Benedetta Nacmias, Irene Piaceri, Silvia Bagnoli, Sandro Sorbi, Marla Gearing, Jonathan Glass, Thomas G. Beach, Sandra E. Black, Mario Masellis, Ekaterina Rogaeva, Jean Paul Vonsattel, Lawrence S. Honig, Julia Kofler, Amalia C. Bruni, Julie Snowden, David Mann, Stuart Pickering-Brown, Janine Diehl-Schmid, Juliane Winkelmann, Daniela Galimberti, Caroline Graff, Linn Öijerstedt, Claire Troakes, Safa Al-Sarraj, Carlos Cruchaga, Nigel J. Cairns, Jonathan D. Rohrer, Glenda M. Halliday, John B. Kwok, John C. van Swieten, Charles L. White, Bernardino Ghetti, Jill R. Murell, Ian R.A. Mackenzie, Ging Yuek R. Hsiung, Barbara Borroni, Giacomina Rossi, Fabrizio Tagliavini, Zbigniew K. Wszolek, Ronald C. Petersen, Eileen H. Bigio, Murray Grossman, Vivianna M. Van Deerlin, William W. Seeley, Bruce L. Miller, Neill R. Graff-Radford, Bradley F. Boeve, Dennis W. Dickson, Joanna M. Biernacka, Rosa Rademakers

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Background: Loss-of-function mutations in GRN cause frontotemporal lobar degeneration (FTLD). Patients with GRN mutations present with a uniform subtype of TAR DNA-binding protein 43 (TDP-43) pathology at autopsy (FTLD-TDP type A); however, age at onset and clinical presentation are variable, even within families. We aimed to identify potential genetic modifiers of disease onset and disease risk in GRN mutation carriers. Methods: The study was done in three stages: a discovery stage, a replication stage, and a meta-analysis of the discovery and replication data. In the discovery stage, genome-wide logistic and linear regression analyses were done to test the association of genetic variants with disease risk (case or control status) and age at onset in patients with a GRN mutation and controls free of neurodegenerative disorders. Suggestive loci (p<1 × 10 −5 ) were genotyped in a replication cohort of patients and controls, followed by a meta-analysis. The effect of genome-wide significant variants at the GFRA2 locus on expression of GFRA2 was assessed using mRNA expression studies in cerebellar tissue samples from the Mayo Clinic brain bank. The effect of the GFRA2 locus on progranulin concentrations was studied using previously generated ELISA-based expression data. Co-immunoprecipitation experiments in HEK293T cells were done to test for a direct interaction between GFRA2 and progranulin. Findings: Individuals were enrolled in the current study between Sept 16, 2014, and Oct 5, 2017. After quality control measures, statistical analyses in the discovery stage included 382 unrelated symptomatic GRN mutation carriers and 1146 controls free of neurodegenerative disorders collected from 34 research centres located in the USA, Canada, Australia, and Europe. In the replication stage, 210 patients (67 symptomatic GRN mutation carriers and 143 patients with FTLD without GRN mutations pathologically confirmed as FTLD-TDP type A) and 1798 controls free of neurodegenerative diseases were recruited from 26 sites, 20 of which overlapped with the discovery stage. No genome-wide significant association with age at onset was identified in the discovery or replication stages, or in the meta-analysis. However, in the case-control analysis, we replicated the previously reported TMEM106B association (rs1990622 meta-analysis odds ratio [OR] 0·54, 95% CI 0·46–0·63; p=3·54 × 10 −16 ), and identified a novel genome-wide significant locus at GFRA2 on chromosome 8p21.3 associated with disease risk (rs36196656 meta-analysis OR 1·49, 95% CI 1·30–1·71; p=1·58 × 10 −8 ). Expression analyses showed that the risk-associated allele at rs36196656 decreased GFRA2 mRNA concentrations in cerebellar tissue (p=0·04). No effect of rs36196656 on plasma and CSF progranulin concentrations was detected by ELISA; however, co-immunoprecipitation experiments in HEK293T cells did suggest a direct binding of progranulin and GFRA2. Interpretation: TMEM106B-related and GFRA2-related pathways might be future targets for treatments for FTLD, but the biological interaction between progranulin and these potential disease modifiers requires further study. TMEM106B and GFRA2 might also provide opportunities to select and stratify patients for future clinical trials and, when more is known about their potential effects, to inform genetic counselling, especially for asymptomatic individuals. Funding: National Institute on Aging, National Institute of Neurological Disorders and Stroke, Canadian Institutes of Health Research, Italian Ministry of Health, UK National Institute for Health Research, National Health and Medical Research Council of Australia, and the French National Research Agency.

Original languageEnglish (US)
Pages (from-to)548-558
Number of pages11
JournalThe Lancet Neurology
Volume17
Issue number6
DOIs
StatePublished - Jun 2018

ASJC Scopus subject areas

  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study'. Together they form a unique fingerprint.

Cite this