PIK3CA mutations in lipomatosis of nerve with or without nerve territory overgrowth

Patrick R. Blackburn, Dragana Milosevic, Tomas Marek, Andrew L. Folpe, B. Matthew Howe, Robert J. Spinner, Jodi Carter

Research output: Contribution to journalArticle

Abstract

Lipomatosis of nerve is a rare malformation characterized by a fibrolipomatous proliferation within peripheral nerve. Lipomatosis of nerve most frequently involves the median nerve, and manifests clinically as a compressive neuropathy. However, 30–60% of cases are associated with tissue overgrowth within the affected nerve’s territory (e.g., macrodactyly for lipomatosis of nerve in the distal median nerve). Somatic activating PIK3CA mutations have been identified in peripheral nerve from patients with lipomatosis of nerve with type I macrodactyly, which is now classified as a PIK3CA-related overgrowth spectrum disorder. However, the PIK3CA mutation status of histologically confirmed lipomatosis of nerve, including cases involving proximal nerves, and cases without territory overgrowth, has not been determined. Fourteen histologically confirmed cases of lipomatosis of nerve involving the median (N = 6), brachial plexus (N = 1), ulnar (N = 3), plantar (N = 2), sciatic and superficial peroneal nerves (N = 1 each) were included. Ten cases had nerve territory overgrowth, ranging from macrodactyly to hemihypertrophy; and four cases had no territory overgrowth. Exome sequencing revealed “hotspot” activating PIK3CA missense mutations in 6/7 cases. Droplet digital polymerase chain reaction for the five most common PIK3CA mutations (p.H1047R, p.H1047L, p.E545K, p.E542K, and p.C420R) confirmed the exome results and identified an additional six cases with mutations (12/14 total). PIK3CA mutations were found in 8/10 cases with territory overgrowth (N = 7 p.H1047R and N = 1 p.E545K), including two proximal nerve cases with extremity overgrowth, and 4/4 cases without territory overgrowth (p.H1047R and p.H1047L, N = 2 each). The variant allele frequency of PIK3CA mutations (6–32%) did not correlate with the overgrowth phenotype. Three intraneural lipomas had no detected PIK3CA mutations. As PIK3CA mutations are frequent events in lipomatosis of nerve, irrespective of anatomic site or territory overgrowth, we propose that all phenotypic variants of this entity be classified within the PIK3CA-related overgrowth spectrum and termed “PIK3CA-related lipomatosis of nerve”.

Original languageEnglish (US)
JournalModern Pathology
DOIs
StateAccepted/In press - Jan 1 2019

Fingerprint

Lipomatosis
Mutation
Median Nerve
Exome
Peripheral Nerves
Peroneal Nerve
Brachial Plexus
Lipoma
Missense Mutation
Gene Frequency
Extremities
Phenotype
Polymerase Chain Reaction

ASJC Scopus subject areas

  • Pathology and Forensic Medicine

Cite this

Blackburn, P. R., Milosevic, D., Marek, T., Folpe, A. L., Howe, B. M., Spinner, R. J., & Carter, J. (Accepted/In press). PIK3CA mutations in lipomatosis of nerve with or without nerve territory overgrowth. Modern Pathology. https://doi.org/10.1038/s41379-019-0354-1

PIK3CA mutations in lipomatosis of nerve with or without nerve territory overgrowth. / Blackburn, Patrick R.; Milosevic, Dragana; Marek, Tomas; Folpe, Andrew L.; Howe, B. Matthew; Spinner, Robert J.; Carter, Jodi.

In: Modern Pathology, 01.01.2019.

Research output: Contribution to journalArticle

Blackburn, Patrick R. ; Milosevic, Dragana ; Marek, Tomas ; Folpe, Andrew L. ; Howe, B. Matthew ; Spinner, Robert J. ; Carter, Jodi. / PIK3CA mutations in lipomatosis of nerve with or without nerve territory overgrowth. In: Modern Pathology. 2019.
@article{381bde6307b54d46839b63861c1c057a,
title = "PIK3CA mutations in lipomatosis of nerve with or without nerve territory overgrowth",
abstract = "Lipomatosis of nerve is a rare malformation characterized by a fibrolipomatous proliferation within peripheral nerve. Lipomatosis of nerve most frequently involves the median nerve, and manifests clinically as a compressive neuropathy. However, 30–60{\%} of cases are associated with tissue overgrowth within the affected nerve’s territory (e.g., macrodactyly for lipomatosis of nerve in the distal median nerve). Somatic activating PIK3CA mutations have been identified in peripheral nerve from patients with lipomatosis of nerve with type I macrodactyly, which is now classified as a PIK3CA-related overgrowth spectrum disorder. However, the PIK3CA mutation status of histologically confirmed lipomatosis of nerve, including cases involving proximal nerves, and cases without territory overgrowth, has not been determined. Fourteen histologically confirmed cases of lipomatosis of nerve involving the median (N = 6), brachial plexus (N = 1), ulnar (N = 3), plantar (N = 2), sciatic and superficial peroneal nerves (N = 1 each) were included. Ten cases had nerve territory overgrowth, ranging from macrodactyly to hemihypertrophy; and four cases had no territory overgrowth. Exome sequencing revealed “hotspot” activating PIK3CA missense mutations in 6/7 cases. Droplet digital polymerase chain reaction for the five most common PIK3CA mutations (p.H1047R, p.H1047L, p.E545K, p.E542K, and p.C420R) confirmed the exome results and identified an additional six cases with mutations (12/14 total). PIK3CA mutations were found in 8/10 cases with territory overgrowth (N = 7 p.H1047R and N = 1 p.E545K), including two proximal nerve cases with extremity overgrowth, and 4/4 cases without territory overgrowth (p.H1047R and p.H1047L, N = 2 each). The variant allele frequency of PIK3CA mutations (6–32{\%}) did not correlate with the overgrowth phenotype. Three intraneural lipomas had no detected PIK3CA mutations. As PIK3CA mutations are frequent events in lipomatosis of nerve, irrespective of anatomic site or territory overgrowth, we propose that all phenotypic variants of this entity be classified within the PIK3CA-related overgrowth spectrum and termed “PIK3CA-related lipomatosis of nerve”.",
author = "Blackburn, {Patrick R.} and Dragana Milosevic and Tomas Marek and Folpe, {Andrew L.} and Howe, {B. Matthew} and Spinner, {Robert J.} and Jodi Carter",
year = "2019",
month = "1",
day = "1",
doi = "10.1038/s41379-019-0354-1",
language = "English (US)",
journal = "Modern Pathology",
issn = "0893-3952",
publisher = "Nature Publishing Group",

}

TY - JOUR

T1 - PIK3CA mutations in lipomatosis of nerve with or without nerve territory overgrowth

AU - Blackburn, Patrick R.

AU - Milosevic, Dragana

AU - Marek, Tomas

AU - Folpe, Andrew L.

AU - Howe, B. Matthew

AU - Spinner, Robert J.

AU - Carter, Jodi

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Lipomatosis of nerve is a rare malformation characterized by a fibrolipomatous proliferation within peripheral nerve. Lipomatosis of nerve most frequently involves the median nerve, and manifests clinically as a compressive neuropathy. However, 30–60% of cases are associated with tissue overgrowth within the affected nerve’s territory (e.g., macrodactyly for lipomatosis of nerve in the distal median nerve). Somatic activating PIK3CA mutations have been identified in peripheral nerve from patients with lipomatosis of nerve with type I macrodactyly, which is now classified as a PIK3CA-related overgrowth spectrum disorder. However, the PIK3CA mutation status of histologically confirmed lipomatosis of nerve, including cases involving proximal nerves, and cases without territory overgrowth, has not been determined. Fourteen histologically confirmed cases of lipomatosis of nerve involving the median (N = 6), brachial plexus (N = 1), ulnar (N = 3), plantar (N = 2), sciatic and superficial peroneal nerves (N = 1 each) were included. Ten cases had nerve territory overgrowth, ranging from macrodactyly to hemihypertrophy; and four cases had no territory overgrowth. Exome sequencing revealed “hotspot” activating PIK3CA missense mutations in 6/7 cases. Droplet digital polymerase chain reaction for the five most common PIK3CA mutations (p.H1047R, p.H1047L, p.E545K, p.E542K, and p.C420R) confirmed the exome results and identified an additional six cases with mutations (12/14 total). PIK3CA mutations were found in 8/10 cases with territory overgrowth (N = 7 p.H1047R and N = 1 p.E545K), including two proximal nerve cases with extremity overgrowth, and 4/4 cases without territory overgrowth (p.H1047R and p.H1047L, N = 2 each). The variant allele frequency of PIK3CA mutations (6–32%) did not correlate with the overgrowth phenotype. Three intraneural lipomas had no detected PIK3CA mutations. As PIK3CA mutations are frequent events in lipomatosis of nerve, irrespective of anatomic site or territory overgrowth, we propose that all phenotypic variants of this entity be classified within the PIK3CA-related overgrowth spectrum and termed “PIK3CA-related lipomatosis of nerve”.

AB - Lipomatosis of nerve is a rare malformation characterized by a fibrolipomatous proliferation within peripheral nerve. Lipomatosis of nerve most frequently involves the median nerve, and manifests clinically as a compressive neuropathy. However, 30–60% of cases are associated with tissue overgrowth within the affected nerve’s territory (e.g., macrodactyly for lipomatosis of nerve in the distal median nerve). Somatic activating PIK3CA mutations have been identified in peripheral nerve from patients with lipomatosis of nerve with type I macrodactyly, which is now classified as a PIK3CA-related overgrowth spectrum disorder. However, the PIK3CA mutation status of histologically confirmed lipomatosis of nerve, including cases involving proximal nerves, and cases without territory overgrowth, has not been determined. Fourteen histologically confirmed cases of lipomatosis of nerve involving the median (N = 6), brachial plexus (N = 1), ulnar (N = 3), plantar (N = 2), sciatic and superficial peroneal nerves (N = 1 each) were included. Ten cases had nerve territory overgrowth, ranging from macrodactyly to hemihypertrophy; and four cases had no territory overgrowth. Exome sequencing revealed “hotspot” activating PIK3CA missense mutations in 6/7 cases. Droplet digital polymerase chain reaction for the five most common PIK3CA mutations (p.H1047R, p.H1047L, p.E545K, p.E542K, and p.C420R) confirmed the exome results and identified an additional six cases with mutations (12/14 total). PIK3CA mutations were found in 8/10 cases with territory overgrowth (N = 7 p.H1047R and N = 1 p.E545K), including two proximal nerve cases with extremity overgrowth, and 4/4 cases without territory overgrowth (p.H1047R and p.H1047L, N = 2 each). The variant allele frequency of PIK3CA mutations (6–32%) did not correlate with the overgrowth phenotype. Three intraneural lipomas had no detected PIK3CA mutations. As PIK3CA mutations are frequent events in lipomatosis of nerve, irrespective of anatomic site or territory overgrowth, we propose that all phenotypic variants of this entity be classified within the PIK3CA-related overgrowth spectrum and termed “PIK3CA-related lipomatosis of nerve”.

UR - http://www.scopus.com/inward/record.url?scp=85072166128&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072166128&partnerID=8YFLogxK

U2 - 10.1038/s41379-019-0354-1

DO - 10.1038/s41379-019-0354-1

M3 - Article

C2 - 31481664

AN - SCOPUS:85072166128

JO - Modern Pathology

JF - Modern Pathology

SN - 0893-3952

ER -