Abstract
SLC26 anion exchangers transport monovalent and divalent anions, with a diversity of anion specificity and stoichiometry. Our microelectrode studies indicate that several SLC26 members are electrogenic. We reported that Slc26a6 functions as a Cl-/formate, Cl-/oxalate, Cl-/OH- and electrogenic Cl-/nHCO3- exchanger. Recently, we have also confirmed that Slc26a7 does not behave as a Cl-/HCO3- exchanger but does function as an electrogenic anion conductance, perhaps a channel. We have also cloned murine Slc26a9, which is strongly expressed in the respiratory tract and stomach. Radioisotope uptakes in Xenopus oocytes indicate that Slc26a9 is a highly selective anion exchanger, transporting Cl- but neither formate, oxalate, nor SO42-. We also utilized electrophysiology to voltage clamp (VC) and/or measure intracellular pH (pHi), Cl- ([Cl-]i) and Na+ ([Na+]i), in response to various ion replacements. Cl- removal in HCO3- depolarizes oocytes (to > +60mV), alkalinizes oocytes, and decreases aCli-. Slc26a9 thus functions as an electrogenic nCl-/HCO3- exchanger, suggesting a role in pulmonary and gastric HCO3- secretion and/or CO2 transport. VC experiments revealed channel-like currents (>10μA at -60mV and >80μA at +60mV) mediated by Slc26a9 in the presence and absence of HCO3-. Our experiments and those of others continue to reveal additional characteristics and unique roles for this new class of electrogenic anion transporters.
Original language | English (US) |
---|---|
Title of host publication | Epithelial Anion Transport in Health and Disease |
Subtitle of host publication | The Role of the SLC26 Transporters Family |
Publisher | Wiley-Blackwell |
Pages | 126-138 |
Number of pages | 13 |
ISBN (Electronic) | 9780470029572 |
ISBN (Print) | 0470016248, 9780470016244 |
DOIs | |
State | Published - Oct 7 2008 |
Keywords
- Cl- channel
- Electrophysiology
- Epithelia
- HCO3- transport
- Microelectrodes
- Voltage clamp
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)