Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-delivered benzoporphyrin

J. W. Miller, A. W. Walsh, M. Kramer, T. Hasan, N. Michaud, Thomas J Flotte, R. Haimovici, E. S. Gragoudas

Research output: Contribution to journalArticle

196 Scopus citations

Abstract

Objective: To investigate photodynamic therapy of experimental choroidal neovascularization using benzoporphyrin derivative monoacid (Verteporfin). Methods: Photodynamic therapy using benzoporphyrin derivative monoacid was investigated in cynomolgus monkeys. Following intravenous injection of benzoporphyrin derivative monoacid (1 to 2 mg/kg) complexed with low density hypoprotein, the eyes were irradiated with 692-nm light at a fluence of 50 to 150 J/cm2 and irradiance of 150 to 600 mW/cm2. Choroidal neovascularization was documented before photodynamic therapy and closure was demonstrated by fundus photography, fluorescein angiography, and light and electron microscopic examination. Results: Following photodynamic therapy, vessels within choroidal neovascularization were occluded, and there was damage to the choroidal neovascularization endothelium and the subjacent choriocapillaris. Damage to the retinal pigment epithelium and photoreceptors was also observed. Conclusion: Photodynamic therapy with lipoprotein delivered benzoporphyrin derivative monoacid was effective in this animal model of choroidal neovascularization and may be a promising, potentially selective, therapy for choroidal neovascularization.

Original languageEnglish (US)
Pages (from-to)810-818
Number of pages9
JournalArchives of Ophthalmology
Volume113
Issue number6
StatePublished - 1995
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Ophthalmology

Cite this

Miller, J. W., Walsh, A. W., Kramer, M., Hasan, T., Michaud, N., Flotte, T. J., Haimovici, R., & Gragoudas, E. S. (1995). Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-delivered benzoporphyrin. Archives of Ophthalmology, 113(6), 810-818.