Phase aberration correction using ultrasound radiation force and vibrometry optimization

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

We describe a phase aberration correction method that uses dynamic ultrasound radiation force to harmonically vibrate an object using amplitude modulated continuous wave ultrasound. The phase of each element of an annular array transducer is adjusted to maximize the radiation force and obtain optimal focus of the ultrasound beam. The maximization of the radiation force is performed by monitoring the velocity of scatterers in the focus region. We present theory that shows focal optimization with radiation force has a well-behaved cost function. Experimental validation is shown by correction of manual defocusing of an annular array as well as correcting for a lens-shaped aberrator placed near the transducer. A Doppler laser vibrometer and a pulse-echo Doppler ultrasound method were used to monitor the velocity of a sphere used as a target for the transducer. By maximizing the radiation force-induced vibration of scatterers in the focal region, the resolution of the ultrasound beam can be recovered after aberration defocusing.

Original languageEnglish (US)
Pages (from-to)1142-1152
Number of pages11
JournalIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Volume54
Issue number6
DOIs
StatePublished - Jun 2007

ASJC Scopus subject areas

  • Instrumentation
  • Acoustics and Ultrasonics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Phase aberration correction using ultrasound radiation force and vibrometry optimization'. Together they form a unique fingerprint.

Cite this