Pharmacological plasticity of cardiac ATP-sensitive potassium channels toward diazoxide revealed by ADP

Nathalie D'Hahan, Christophe Moreau, Anne Lise Prost, Hélène Jacquet, Alexey E. Alekseev, André Terzic, Michel Vivaudou

Research output: Contribution to journalArticle

160 Scopus citations

Abstract

The pharmacological phenotype of ATP-sensitive potassium (K(ATP)) channels is defined by their tissue-specific regulatory subunit, the sulfonylurea receptor (SUR), which associates with the pore-forming channel core, Kir6.2. The potassium channel opener diazoxide has hyperglycemic and hypotensive properties that stem from its ability to open K(ATP) channels in pancreas and smooth muscle. Diazoxide is believed not to have any significant action on cardiac sarcolemmal K(ATP) channels. Yet, diazoxide can be cardioprotective in ischemia and has been found to bind to the presumed cardiac sarcolemmal K(ATP) channel-regulatory subunit, SUR2A. Here, in excised patches, diazoxide (300 μM) activated pancreatic SUR1/Kir6.2 currents and had little effect on native or recombinant cardiac SUR2A/Kir6.2 currents. However, in the presence of cytoplasmic ADP (100 μM), SUR2A/Kir6.2 channels became as sensitive to diazoxide as SUR1/Kir6.2 channels. This effect involved specific interactions between MgADP and SUR, as it required Mg2+, but not ATP, and was abolished by point mutations in the second nucleotide-binding domain of SUR, which impaired channel activation by MgADP. At the whole-cell level, in cardiomyocytes treated with oligomycin to block mitochondrial function, diazoxide could also activate K(ATP) currents only after cytosolic ADP had been raised by a creatine kinase inhibitor. Thus, ADP serves as a cofactor to define the responsiveness of cardiac K(ATP) channels toward diazoxide. The present demonstration of a pharmacological plasticity of K(ATP) channels identifies a mechanism for the control of channel activity in cardiac cells depending on the cellular ADP levels, which are elevated under ischemia.

Original languageEnglish (US)
Pages (from-to)12162-12167
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume96
Issue number21
DOIs
StatePublished - Oct 12 1999

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Pharmacological plasticity of cardiac ATP-sensitive potassium channels toward diazoxide revealed by ADP'. Together they form a unique fingerprint.

  • Cite this