Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (Paclitaxel)-induced cytotoxicity

Javier A. Menendez, Luciano Vellon, Ramon Colomer, Ruth Lupu

Research output: Contribution to journalArticle

80 Citations (Scopus)

Abstract

The relationship between breast cancer-associated fatty acid synthase (FAS; oncogenic antigen-519) and chemotherapy-induced cell damage has not been studied. We examined the ability of C75, a synthetic slow-binding inhibitor of FAS activity, to modulate the cytotoxic activity of the microtubule-interfering agent Taxol™ (paclitaxel) in SK-Br3, MDA-MB-231, MCF-7 and multidrug-resistant MDR-1 (P-Glycoprotein)-overexpressing MCF-7/AdrR breast cancer cells. When the combination of C75 with Taxol™ in either concurrent (C75 + Taxol™ 24 hr) or sequential (C75 24 hr → Taxol™ 24 hr) schedules were tested for synergism, addition or antagonism using the isobologram and the median-effect plot analyses, co-exposure of C75 and Taxol™ mostly demonstrated synergistic effects, whereas sequential exposure to C75 followed by Taxol™ mainly showed additive or antagonistic interactions. Because the nature of the cytotoxic interactions was definitely schedule-dependent in MCF-7 cells, we next evaluated the effects of C75 on Taxol™-induced apoptosis as well as Taxol™-activated cell death and cell survival-signaling pathways in this breast cancer cell model. An ELISA for histone-associated DNA fragments demonstrated that C75 and Taxol™ co-exposure caused a synergistic enhancement of apoptotic cell death, whereas C75 pre-treatment did not enhance the apoptosis-inducing activity of Taxol™. Co-exposure to C75 and Taxol™ induced a remarkable nuclear accumulation of activated p38 mitogen-activated protein kinase (p38 MAPK), which was accompanied by a synergistic nuclear accumulation of the p53 tumor-suppressor protein that was phosphorylated at Ser46, a p38 MAPK-regulated pro-apoptotic modification of p53. As single agents, FAS blocker C75 and Taxol™ induced a significant stimulation of the proliferation and cell survival mitogen-activated protein kinase extracellular signal-regulated kinase (ERK1/ERK2 MAPK) activity, whereas, in combination, they interfered with ERK1/ERK2 activation. Moreover, the combined treatment of C75 and Taxol™ inactivated the anti-apoptotic AKT (protein kinase B) kinase more than either agent alone, as evidenced by a synergistic down-regulation of AKT phosphorylation at its activating site Ser473 without affecting AKT protein levels. To rule out a role for non-FAS C75-mediated effects, we finally used the potent and highly sequence-specific mechanism of RNA interference (RNAi) to block FAS-dependent signaling. Importantly, SK-Br3 and multi-drug resistant MCF-7/AdrR cells transiently transfected with sequence-specific double-stranded RNA oligonucleotides targeting FAS gene demonstrated hypersensitivity to Taxol™-induced apoptotic cell death. Our findings establish for the first time that FAS blockade augments the cytotoxicity of anti-mitotic drug Taxol™ against breast cancer cells and that this chemosensitizing effect is schedule-dependent. We suggest that the alternate activation of both the pro-apoptotic p38 MAPK-p53 signaling and the cytoprotective MEK1/2 → ERK1/2 cascade, as well as the inactivation of the anti-apoptotic AKT activity may explain, at least in part, the sequence-dependent enhancement of Taxol™-induced cytotoxicity and apoptosis that follows inhibition of FAS activity in breast cancer cells. If chemically stable FAS inhibitors demonstrate systemic anticancer effects of FAS inhibition in vivo, these findings may render FAS as a valuable molecular target to enhance the efficacy of taxanes-based chemotherapy in human breast cancer.

Original languageEnglish (US)
Pages (from-to)19-35
Number of pages17
JournalInternational Journal of Cancer
Volume115
Issue number1
DOIs
StatePublished - May 20 2005
Externally publishedYes

Fingerprint

Fatty Acid Synthases
RNA Interference
Paclitaxel
Pharmacology
Breast Neoplasms
Antigens
p38 Mitogen-Activated Protein Kinases
Appointments and Schedules
Cell Death
MCF-7 Cells
Apoptosis
Cell Survival
Tumor Suppressor Protein p53
Drug Therapy
Taxoids
Proto-Oncogene Proteins c-akt
Apoptosis Regulatory Proteins
Double-Stranded RNA
Gene Targeting
Extracellular Signal-Regulated MAP Kinases

Keywords

  • Apoptosis
  • Breast cancer
  • C75
  • Chemotherapy
  • Fatty acid synthase
  • Paclitaxel
  • siRNA
  • Taxol™

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

@article{00f7a57e96f44b3ca3af55ff7214e1b0,
title = "Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (Paclitaxel)-induced cytotoxicity",
abstract = "The relationship between breast cancer-associated fatty acid synthase (FAS; oncogenic antigen-519) and chemotherapy-induced cell damage has not been studied. We examined the ability of C75, a synthetic slow-binding inhibitor of FAS activity, to modulate the cytotoxic activity of the microtubule-interfering agent Taxol™ (paclitaxel) in SK-Br3, MDA-MB-231, MCF-7 and multidrug-resistant MDR-1 (P-Glycoprotein)-overexpressing MCF-7/AdrR breast cancer cells. When the combination of C75 with Taxol™ in either concurrent (C75 + Taxol™ 24 hr) or sequential (C75 24 hr → Taxol™ 24 hr) schedules were tested for synergism, addition or antagonism using the isobologram and the median-effect plot analyses, co-exposure of C75 and Taxol™ mostly demonstrated synergistic effects, whereas sequential exposure to C75 followed by Taxol™ mainly showed additive or antagonistic interactions. Because the nature of the cytotoxic interactions was definitely schedule-dependent in MCF-7 cells, we next evaluated the effects of C75 on Taxol™-induced apoptosis as well as Taxol™-activated cell death and cell survival-signaling pathways in this breast cancer cell model. An ELISA for histone-associated DNA fragments demonstrated that C75 and Taxol™ co-exposure caused a synergistic enhancement of apoptotic cell death, whereas C75 pre-treatment did not enhance the apoptosis-inducing activity of Taxol™. Co-exposure to C75 and Taxol™ induced a remarkable nuclear accumulation of activated p38 mitogen-activated protein kinase (p38 MAPK), which was accompanied by a synergistic nuclear accumulation of the p53 tumor-suppressor protein that was phosphorylated at Ser46, a p38 MAPK-regulated pro-apoptotic modification of p53. As single agents, FAS blocker C75 and Taxol™ induced a significant stimulation of the proliferation and cell survival mitogen-activated protein kinase extracellular signal-regulated kinase (ERK1/ERK2 MAPK) activity, whereas, in combination, they interfered with ERK1/ERK2 activation. Moreover, the combined treatment of C75 and Taxol™ inactivated the anti-apoptotic AKT (protein kinase B) kinase more than either agent alone, as evidenced by a synergistic down-regulation of AKT phosphorylation at its activating site Ser473 without affecting AKT protein levels. To rule out a role for non-FAS C75-mediated effects, we finally used the potent and highly sequence-specific mechanism of RNA interference (RNAi) to block FAS-dependent signaling. Importantly, SK-Br3 and multi-drug resistant MCF-7/AdrR cells transiently transfected with sequence-specific double-stranded RNA oligonucleotides targeting FAS gene demonstrated hypersensitivity to Taxol™-induced apoptotic cell death. Our findings establish for the first time that FAS blockade augments the cytotoxicity of anti-mitotic drug Taxol™ against breast cancer cells and that this chemosensitizing effect is schedule-dependent. We suggest that the alternate activation of both the pro-apoptotic p38 MAPK-p53 signaling and the cytoprotective MEK1/2 → ERK1/2 cascade, as well as the inactivation of the anti-apoptotic AKT activity may explain, at least in part, the sequence-dependent enhancement of Taxol™-induced cytotoxicity and apoptosis that follows inhibition of FAS activity in breast cancer cells. If chemically stable FAS inhibitors demonstrate systemic anticancer effects of FAS inhibition in vivo, these findings may render FAS as a valuable molecular target to enhance the efficacy of taxanes-based chemotherapy in human breast cancer.",
keywords = "Apoptosis, Breast cancer, C75, Chemotherapy, Fatty acid synthase, Paclitaxel, siRNA, Taxol™",
author = "Menendez, {Javier A.} and Luciano Vellon and Ramon Colomer and Ruth Lupu",
year = "2005",
month = "5",
day = "20",
doi = "10.1002/ijc.20754",
language = "English (US)",
volume = "115",
pages = "19--35",
journal = "International Journal of Cancer",
issn = "0020-7136",
publisher = "Wiley-Liss Inc.",
number = "1",

}

TY - JOUR

T1 - Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (Paclitaxel)-induced cytotoxicity

AU - Menendez, Javier A.

AU - Vellon, Luciano

AU - Colomer, Ramon

AU - Lupu, Ruth

PY - 2005/5/20

Y1 - 2005/5/20

N2 - The relationship between breast cancer-associated fatty acid synthase (FAS; oncogenic antigen-519) and chemotherapy-induced cell damage has not been studied. We examined the ability of C75, a synthetic slow-binding inhibitor of FAS activity, to modulate the cytotoxic activity of the microtubule-interfering agent Taxol™ (paclitaxel) in SK-Br3, MDA-MB-231, MCF-7 and multidrug-resistant MDR-1 (P-Glycoprotein)-overexpressing MCF-7/AdrR breast cancer cells. When the combination of C75 with Taxol™ in either concurrent (C75 + Taxol™ 24 hr) or sequential (C75 24 hr → Taxol™ 24 hr) schedules were tested for synergism, addition or antagonism using the isobologram and the median-effect plot analyses, co-exposure of C75 and Taxol™ mostly demonstrated synergistic effects, whereas sequential exposure to C75 followed by Taxol™ mainly showed additive or antagonistic interactions. Because the nature of the cytotoxic interactions was definitely schedule-dependent in MCF-7 cells, we next evaluated the effects of C75 on Taxol™-induced apoptosis as well as Taxol™-activated cell death and cell survival-signaling pathways in this breast cancer cell model. An ELISA for histone-associated DNA fragments demonstrated that C75 and Taxol™ co-exposure caused a synergistic enhancement of apoptotic cell death, whereas C75 pre-treatment did not enhance the apoptosis-inducing activity of Taxol™. Co-exposure to C75 and Taxol™ induced a remarkable nuclear accumulation of activated p38 mitogen-activated protein kinase (p38 MAPK), which was accompanied by a synergistic nuclear accumulation of the p53 tumor-suppressor protein that was phosphorylated at Ser46, a p38 MAPK-regulated pro-apoptotic modification of p53. As single agents, FAS blocker C75 and Taxol™ induced a significant stimulation of the proliferation and cell survival mitogen-activated protein kinase extracellular signal-regulated kinase (ERK1/ERK2 MAPK) activity, whereas, in combination, they interfered with ERK1/ERK2 activation. Moreover, the combined treatment of C75 and Taxol™ inactivated the anti-apoptotic AKT (protein kinase B) kinase more than either agent alone, as evidenced by a synergistic down-regulation of AKT phosphorylation at its activating site Ser473 without affecting AKT protein levels. To rule out a role for non-FAS C75-mediated effects, we finally used the potent and highly sequence-specific mechanism of RNA interference (RNAi) to block FAS-dependent signaling. Importantly, SK-Br3 and multi-drug resistant MCF-7/AdrR cells transiently transfected with sequence-specific double-stranded RNA oligonucleotides targeting FAS gene demonstrated hypersensitivity to Taxol™-induced apoptotic cell death. Our findings establish for the first time that FAS blockade augments the cytotoxicity of anti-mitotic drug Taxol™ against breast cancer cells and that this chemosensitizing effect is schedule-dependent. We suggest that the alternate activation of both the pro-apoptotic p38 MAPK-p53 signaling and the cytoprotective MEK1/2 → ERK1/2 cascade, as well as the inactivation of the anti-apoptotic AKT activity may explain, at least in part, the sequence-dependent enhancement of Taxol™-induced cytotoxicity and apoptosis that follows inhibition of FAS activity in breast cancer cells. If chemically stable FAS inhibitors demonstrate systemic anticancer effects of FAS inhibition in vivo, these findings may render FAS as a valuable molecular target to enhance the efficacy of taxanes-based chemotherapy in human breast cancer.

AB - The relationship between breast cancer-associated fatty acid synthase (FAS; oncogenic antigen-519) and chemotherapy-induced cell damage has not been studied. We examined the ability of C75, a synthetic slow-binding inhibitor of FAS activity, to modulate the cytotoxic activity of the microtubule-interfering agent Taxol™ (paclitaxel) in SK-Br3, MDA-MB-231, MCF-7 and multidrug-resistant MDR-1 (P-Glycoprotein)-overexpressing MCF-7/AdrR breast cancer cells. When the combination of C75 with Taxol™ in either concurrent (C75 + Taxol™ 24 hr) or sequential (C75 24 hr → Taxol™ 24 hr) schedules were tested for synergism, addition or antagonism using the isobologram and the median-effect plot analyses, co-exposure of C75 and Taxol™ mostly demonstrated synergistic effects, whereas sequential exposure to C75 followed by Taxol™ mainly showed additive or antagonistic interactions. Because the nature of the cytotoxic interactions was definitely schedule-dependent in MCF-7 cells, we next evaluated the effects of C75 on Taxol™-induced apoptosis as well as Taxol™-activated cell death and cell survival-signaling pathways in this breast cancer cell model. An ELISA for histone-associated DNA fragments demonstrated that C75 and Taxol™ co-exposure caused a synergistic enhancement of apoptotic cell death, whereas C75 pre-treatment did not enhance the apoptosis-inducing activity of Taxol™. Co-exposure to C75 and Taxol™ induced a remarkable nuclear accumulation of activated p38 mitogen-activated protein kinase (p38 MAPK), which was accompanied by a synergistic nuclear accumulation of the p53 tumor-suppressor protein that was phosphorylated at Ser46, a p38 MAPK-regulated pro-apoptotic modification of p53. As single agents, FAS blocker C75 and Taxol™ induced a significant stimulation of the proliferation and cell survival mitogen-activated protein kinase extracellular signal-regulated kinase (ERK1/ERK2 MAPK) activity, whereas, in combination, they interfered with ERK1/ERK2 activation. Moreover, the combined treatment of C75 and Taxol™ inactivated the anti-apoptotic AKT (protein kinase B) kinase more than either agent alone, as evidenced by a synergistic down-regulation of AKT phosphorylation at its activating site Ser473 without affecting AKT protein levels. To rule out a role for non-FAS C75-mediated effects, we finally used the potent and highly sequence-specific mechanism of RNA interference (RNAi) to block FAS-dependent signaling. Importantly, SK-Br3 and multi-drug resistant MCF-7/AdrR cells transiently transfected with sequence-specific double-stranded RNA oligonucleotides targeting FAS gene demonstrated hypersensitivity to Taxol™-induced apoptotic cell death. Our findings establish for the first time that FAS blockade augments the cytotoxicity of anti-mitotic drug Taxol™ against breast cancer cells and that this chemosensitizing effect is schedule-dependent. We suggest that the alternate activation of both the pro-apoptotic p38 MAPK-p53 signaling and the cytoprotective MEK1/2 → ERK1/2 cascade, as well as the inactivation of the anti-apoptotic AKT activity may explain, at least in part, the sequence-dependent enhancement of Taxol™-induced cytotoxicity and apoptosis that follows inhibition of FAS activity in breast cancer cells. If chemically stable FAS inhibitors demonstrate systemic anticancer effects of FAS inhibition in vivo, these findings may render FAS as a valuable molecular target to enhance the efficacy of taxanes-based chemotherapy in human breast cancer.

KW - Apoptosis

KW - Breast cancer

KW - C75

KW - Chemotherapy

KW - Fatty acid synthase

KW - Paclitaxel

KW - siRNA

KW - Taxol™

UR - http://www.scopus.com/inward/record.url?scp=17644394237&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=17644394237&partnerID=8YFLogxK

U2 - 10.1002/ijc.20754

DO - 10.1002/ijc.20754

M3 - Article

C2 - 15657900

AN - SCOPUS:17644394237

VL - 115

SP - 19

EP - 35

JO - International Journal of Cancer

JF - International Journal of Cancer

SN - 0020-7136

IS - 1

ER -