Pancreatic islet cryopreservation by vitrification achieves high viability, function, recovery and clinical scalability for transplantation

Li Zhan, Joseph Sushil Rao, Nikhil Sethia, Michael Q. Slama, Zonghu Han, Diane Tobolt, Michael Etheridge, Quinn P. Peterson, Cari S. Dutcher, John C. Bischof, Erik B. Finger

Research output: Contribution to journalArticlepeer-review

Abstract

Pancreatic islet transplantation can cure diabetes but requires accessible, high-quality islets in sufficient quantities. Cryopreservation could solve islet supply chain challenges by enabling quality-controlled banking and pooling of donor islets. Unfortunately, cryopreservation has not succeeded in this objective, as it must simultaneously provide high recovery, viability, function and scalability. Here, we achieve this goal in mouse, porcine, human and human stem cell (SC)-derived beta cell (SC-beta) islets by comprehensive optimization of cryoprotectant agent (CPA) composition, CPA loading and unloading conditions and methods for vitrification and rewarming (VR). Post-VR islet viability, relative to control, was 90.5% for mouse, 92.1% for SC-beta, 87.2% for porcine and 87.4% for human islets, and it remained unchanged for at least 9 months of cryogenic storage. VR islets had normal macroscopic, microscopic, and ultrastructural morphology. Mitochondrial membrane potential and adenosine triphosphate (ATP) levels were slightly reduced, but all other measures of cellular respiration, including oxygen consumption rate (OCR) to produce ATP, were unchanged. VR islets had normal glucose-stimulated insulin secretion (GSIS) function in vitro and in vivo. Porcine and SC-beta islets made insulin in xenotransplant models, and mouse islets tested in a marginal mass syngeneic transplant model cured diabetes in 92% of recipients within 24–48 h after transplant. Excellent glycemic control was seen for 150 days. Finally, our approach processed 2,500 islets with >95% islets recovery at >89% post-thaw viability and can readily be scaled up for higher throughput. These results suggest that cryopreservation can now be used to supply needed islets for improved transplantation outcomes that cure diabetes.

Original languageEnglish (US)
Pages (from-to)798-808
Number of pages11
JournalNature Medicine
Volume28
Issue number4
DOIs
StatePublished - Apr 2022

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Pancreatic islet cryopreservation by vitrification achieves high viability, function, recovery and clinical scalability for transplantation'. Together they form a unique fingerprint.

Cite this