Overexpression of ubiquitin specific protease 44 (USP44) induces chromosomal instability and is frequently observed in human T-Cell leukemia

Ying Zhang, Jan van Deursen, Paul J. Galardy

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Cdc20-anaphase promoting complex/cyclosome (Cdc20-APC/C) E3 ubiquitin ligase activity is essential for orderly mitotic progression. The deubiqituinase USP44 was identified as a key regulator of APC/C and has been proposed to suppress Cdc20-APC/C activity by maintaining its association with the inhibitory protein Mad2 until all chromosomes are properly attached to the mitotic spindle. However, this notion has been challenged by data in which a lysine-less mutant of Cdc20 leads to premature anaphase, suggesting that it's ubiquitination is not required for APC/C activation. To further evaluate its role in checkpoint function and chromosome instability, we studied the consequences of over-expression of mouse Usp44 in non-transformed murine embryonic fibroblasts. Here we show that cells with high Usp44 are prone to chromosome segregation errors and aneuploidization. We find that high Usp44 promotes association of Mad2 with Cdc20 and reinforces the mitotic checkpoint. Surprisingly, the APC/C-Cdc20 substrate cyclin B1 is stabilized in G2 when Usp44 is over-expressed, but is degraded with normal kinetics once cells enter mitosis. Furthermore, we show that USP44 expression is elevated in subset of T-cell leukemias. These data are consistent with an important role for USP44 in regulating Cdc20-APC/C activity and suggest that high levels of this enzyme may contribute to the pathogenesis of T-ALL.

Original languageEnglish (US)
Article numbere23389
JournalPloS one
Volume6
Issue number8
DOIs
StatePublished - 2011

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Overexpression of ubiquitin specific protease 44 (USP44) induces chromosomal instability and is frequently observed in human T-Cell leukemia'. Together they form a unique fingerprint.

Cite this