Opposing effects of apoE2 and apoE4 on microglial activation and lipid metabolism in response to demyelination

Na Wang, Minghui Wang, Suren Jeevaratnam, Cassandra Rosenberg, Tadafumi C. Ikezu, Francis Shue, Sydney V. Doss, Alla Alnobani, Yuka A. Martens, Melissa Wren, Yan W. Asmann, Bin Zhang, Guojun Bu, Chia Chen Liu

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Abnormal lipid accumulation has been recognized as a key element of immune dysregulation in microglia whose dysfunction contributes to neurodegenerative diseases. Microglia play essential roles in the clearance of lipid-rich cellular debris upon myelin damage or demyelination, a common pathogenic event in neuronal disorders. Apolipoprotein E (apoE) plays a pivotal role in brain lipid homeostasis; however, the apoE isoform-dependent mechanisms regulating microglial response upon demyelination remain unclear. Methods: To determine how apoE isoforms impact microglial response to myelin damage, 2-month-old apoE2-, apoE3-, and apoE4-targeted replacement (TR) mice were fed with normal diet (CTL) or 0.2% cuprizone (CPZ) diet for four weeks to induce demyelination in the brain. To examine the effects on subsequent remyelination, the cuprizone diet was switched back to regular chow for an additional two weeks. After treatment, brains were collected and subjected to immunohistochemical and biochemical analyses to assess the myelination status, microglial responses, and their capacity for myelin debris clearance. Bulk RNA sequencing was performed on the corpus callosum (CC) to address the molecular mechanisms underpinning apoE-mediated microglial activation upon demyelination. Results: We demonstrate dramatic isoform-dependent differences in the activation and function of microglia upon cuprizone-induced demyelination. ApoE2 microglia were hyperactive and more efficient in clearing lipid-rich myelin debris, whereas apoE4 microglia displayed a less activated phenotype with reduced clearance efficiency, compared with apoE3 microglia. Transcriptomic profiling revealed that key molecules known to modulate microglial functions had differential expression patterns in an apoE isoform-dependent manner. Importantly, apoE4 microglia had excessive buildup of lipid droplets, consistent with an impairment in lipid metabolism, whereas apoE2 microglia displayed a superior ability to metabolize myelin enriched lipids. Further, apoE2-TR mice had a greater extent of remyelination; whereas remyelination was compromised in apoE4-TR mice. Conclusions: Our findings provide critical mechanistic insights into how apoE isoforms differentially regulate microglial function and the maintenance of myelin dynamics, which may inform novel therapeutic avenues for targeting microglial dysfunctions in neurodegenerative diseases.

Original languageEnglish (US)
Article number75
JournalMolecular neurodegeneration
Volume17
Issue number1
DOIs
StatePublished - Dec 2022

Keywords

  • Demyelination
  • Lipid droplets
  • Microglia
  • Remyelination
  • apoE isoforms

ASJC Scopus subject areas

  • Molecular Biology
  • Clinical Neurology
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Opposing effects of apoE2 and apoE4 on microglial activation and lipid metabolism in response to demyelination'. Together they form a unique fingerprint.

Cite this