Nuclei-specific thalamic connectivity predicts seizure frequency in drug-resistant medial temporal lobe epilepsy

Hang Joon Jo, Daniel L. Kenny-Jung, Irena Balzekas, Eduardo E. Benarroch, David T. Jones, Benjamin H. Brinkmann, S. Matt Stead, Jamie J. Van Gompel, Kirk M. Welker, Gregory A. Worrell

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

Background and objectives: We assessed correlations between the resting state functional connectivity (RSFC) of different thalamic nuclei and seizure frequency in patients with drug-resistant medial temporal lobe epilepsy (mTLE). Methods: Seventeen patients with mTLE and 17 sex-/age-/handedness-matched controls participated. A seed-based correlation method for the resting-state FMRI data was implemented to get RSFC maps of 70 thalamic nuclei seed masks. Group statistics for individual RSFC for subjects and seed masks were performed to obtain within-group characteristics and between-group differences with age covariates. A linear regression was applied to test whether seizure frequency correlated with thalamic nuclear RSFC with the whole brain in mTLE patients. Results: RSFC of thalamic nuclei showed spatially distinguishable connectivity patterns that reflected principal inputs and outputs that were derived from priori anatomical knowledge. We found group differences between normal control and mTLE groups in RSFC for nuclei seeds located in various subdivisions of thalamus. The RSFCs in some of those nuclei were strongly correlated with seizure frequency. Conclusions: Mediodorsal thalamic nuclei may play important roles in seizure activity or in the regulation of neuronal activity in the limbic system. The RSFC of motor- and sensory-relay nuclei may help elucidate sensory-motor deficits associated with chronic seizure activity. RSFC of the pulvinar nuclei of the thalamus could also be a key reflection of symptom-related functional deficits in mTLE.

Original languageEnglish (US)
Article number101671
JournalNeuroImage: Clinical
Volume21
DOIs
StatePublished - 2019

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Neurology
  • Clinical Neurology
  • Cognitive Neuroscience

Fingerprint Dive into the research topics of 'Nuclei-specific thalamic connectivity predicts seizure frequency in drug-resistant medial temporal lobe epilepsy'. Together they form a unique fingerprint.

  • Cite this