NKAP regulates invariant NKT Cell proliferation and differentiation into ROR-γt-expressing NKT17 Cells

Puspa Thapa, Meibo W. Chen, Douglas C. McWilliams, Paul Belmonte, Megan Constans, Derek B. Sant'Angelo, Virginia Smith Shapiro

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Invariant NKT (iNKT) cells are a unique lineage with characteristics of both adaptive and innate lymphocytes, and they recognize glycolipids presented by an MHC class I-like CD1d molecule. During thymic development, iNKT cells also differentiate into NKT1, NKT2, and NKT17 functional subsets that preferentially produce cytokines IFN-γ, IL-4, and IL-17, respectively, upon activation. Newly selected iNKT cells undergo a burst of proliferation, which is defective in mice with a specific deletion of NKAP in the iNKT cell lineage, leading to severe reductions in thymic and peripheral iNKT cell numbers. The decreased cell number is not due to defective homeostasis or increased apoptosis, and it is not rescued by Bcl-xL overexpression. NKAP is also required for differentiation into NKT17 cells, but NKT1 and NKT2 cell development and function are unaffected. This failure in NKT17 development is rescued by transgenic expression of promyelocytic leukemia zinc finger; however, the promyelocytic leukemia zinc finger transgene does not restore iNKT cell numbers or the block in positive selection into the iNKT cell lineage in CD4-cre NKAP conditional knockout mice. Therefore, NKAP regulates multiple steps in iNKT cell development and differentiation.

Original languageEnglish (US)
Pages (from-to)4987-4998
Number of pages12
JournalJournal of Immunology
Volume196
Issue number12
DOIs
StatePublished - Jun 15 2016

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Fingerprint Dive into the research topics of 'NKAP regulates invariant NKT Cell proliferation and differentiation into ROR-γt-expressing NKT17 Cells'. Together they form a unique fingerprint.

Cite this