Nicotinic acetylcholine receptors of muscle and neuronal (α7) types coexpressed in a small cell lung carcinoma

Michele A. Sciamanna, Guy E. Griesmann, Carol L. Williams, Vanda A Lennon

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

SCC-37 is a small cell lung carcinoma line that aberrantly expresses muscle-type nicotinic acetylcholine receptors (nAChRs). It was established from a patient with a paraneoplastic autoimmune neuromuscular disorder, myasthenia gravis. When grown as a xenograft tumor, SCC-37 cells express plasma membrane receptors that bind 125I-labeled α-bungarotoxin (125I- α-BTx), cosediment with 9S nAChR pentamers, and bind to a monoclonal antibody (MAb 35) specific for muscle-type (α1 subunit) α-BTx receptors. The agonist carbamylcholine (carbachol) stimulates influx of 22Na+ in SCC- 37 cells; this is inhibited by α-BTx and by d-tubocurarine. Long-term cultured SCC-37 cells have functional and ligand-binding evidence for surface coexpression of both α1 and neuronal-type (α7 subunit) α-BTx receptors. A subclone of SCC-37, designated SCC-A9, expresses only the neuronal-type (α7 subunit) α-BTx receptors on its surface. Carbachol does not stimulate 22Na+ influx in SCC-A9 cells, but cytisine initiates a sustained influx of Ca2+. Activation of this response is inhibited by α-BTx and by the α7- selective antagonist methyllycaconitine. Addition of Co2+ abrogates the sustained elevation of intracellular free Ca2+ concentration, implying that the cytisine-stimulated influx of Ca2+ is sustained by secondary opening of voltage-sensitive channels in the plasma membrane. Surface receptors for 125I-α-BTx are blocked by methyllycaconitine and d-tubocurarine. Solubilized α-BTx receptors from plasma membranes of SCC-A9 cells cosediment with 10S neuronal nAChR pentamers and bind to an α7-specific monoclonal antibody (MAb P27) but not to the muscle nAChR-reactive MAb 35. However, MAb P27 and MAb 35 both bind to α-BTx receptors solubilized from the cytoplasmic compartments of SCC-A9 and the parental SCC-37 line. Reverse transcription- PCR analysis revealed RNA transcripts for α7 and α1 subunits in both SCC- A9 and SCC-37 cells. The nAChRs that are expressed in these novel human cell lines can regulate cation fluxes directly as well as indirectly by synergizing with the activity of voltage-sensitive Ca2+ channels. These activities may influence the secretion of autocrine growth factors and the transcription of growth regulatory genes and thus be pertinent to the growth and metastasis of malignant neuroendocrine neoplasms.

Original languageEnglish (US)
Pages (from-to)2302-2311
Number of pages10
JournalJournal of Neurochemistry
Volume69
Issue number6
StatePublished - Dec 1997

Fingerprint

Small Cell Lung Carcinoma
Nicotinic Receptors
Cell membranes
Muscle
Cells
Tubocurarine
Muscles
Carbachol
Transcription
Monoclonal Antibodies
Cell Membrane
Bungarotoxins
Electric potential
Cytoplasmic and Nuclear Receptors
Heterografts
Cations
Tumors
Intercellular Signaling Peptides and Proteins
Genes
Chemical activation

Keywords

  • α-Bungarotoxin receptors
  • α subunit
  • Myasthenia gravis
  • Nicotinic acetylcholine receptor

ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience

Cite this

Nicotinic acetylcholine receptors of muscle and neuronal (α7) types coexpressed in a small cell lung carcinoma. / Sciamanna, Michele A.; Griesmann, Guy E.; Williams, Carol L.; Lennon, Vanda A.

In: Journal of Neurochemistry, Vol. 69, No. 6, 12.1997, p. 2302-2311.

Research output: Contribution to journalArticle

Sciamanna, Michele A. ; Griesmann, Guy E. ; Williams, Carol L. ; Lennon, Vanda A. / Nicotinic acetylcholine receptors of muscle and neuronal (α7) types coexpressed in a small cell lung carcinoma. In: Journal of Neurochemistry. 1997 ; Vol. 69, No. 6. pp. 2302-2311.
@article{4e11f5c2cde34db7a0b052fd1914f1fb,
title = "Nicotinic acetylcholine receptors of muscle and neuronal (α7) types coexpressed in a small cell lung carcinoma",
abstract = "SCC-37 is a small cell lung carcinoma line that aberrantly expresses muscle-type nicotinic acetylcholine receptors (nAChRs). It was established from a patient with a paraneoplastic autoimmune neuromuscular disorder, myasthenia gravis. When grown as a xenograft tumor, SCC-37 cells express plasma membrane receptors that bind 125I-labeled α-bungarotoxin (125I- α-BTx), cosediment with 9S nAChR pentamers, and bind to a monoclonal antibody (MAb 35) specific for muscle-type (α1 subunit) α-BTx receptors. The agonist carbamylcholine (carbachol) stimulates influx of 22Na+ in SCC- 37 cells; this is inhibited by α-BTx and by d-tubocurarine. Long-term cultured SCC-37 cells have functional and ligand-binding evidence for surface coexpression of both α1 and neuronal-type (α7 subunit) α-BTx receptors. A subclone of SCC-37, designated SCC-A9, expresses only the neuronal-type (α7 subunit) α-BTx receptors on its surface. Carbachol does not stimulate 22Na+ influx in SCC-A9 cells, but cytisine initiates a sustained influx of Ca2+. Activation of this response is inhibited by α-BTx and by the α7- selective antagonist methyllycaconitine. Addition of Co2+ abrogates the sustained elevation of intracellular free Ca2+ concentration, implying that the cytisine-stimulated influx of Ca2+ is sustained by secondary opening of voltage-sensitive channels in the plasma membrane. Surface receptors for 125I-α-BTx are blocked by methyllycaconitine and d-tubocurarine. Solubilized α-BTx receptors from plasma membranes of SCC-A9 cells cosediment with 10S neuronal nAChR pentamers and bind to an α7-specific monoclonal antibody (MAb P27) but not to the muscle nAChR-reactive MAb 35. However, MAb P27 and MAb 35 both bind to α-BTx receptors solubilized from the cytoplasmic compartments of SCC-A9 and the parental SCC-37 line. Reverse transcription- PCR analysis revealed RNA transcripts for α7 and α1 subunits in both SCC- A9 and SCC-37 cells. The nAChRs that are expressed in these novel human cell lines can regulate cation fluxes directly as well as indirectly by synergizing with the activity of voltage-sensitive Ca2+ channels. These activities may influence the secretion of autocrine growth factors and the transcription of growth regulatory genes and thus be pertinent to the growth and metastasis of malignant neuroendocrine neoplasms.",
keywords = "α-Bungarotoxin receptors, α subunit, Myasthenia gravis, Nicotinic acetylcholine receptor",
author = "Sciamanna, {Michele A.} and Griesmann, {Guy E.} and Williams, {Carol L.} and Lennon, {Vanda A}",
year = "1997",
month = "12",
language = "English (US)",
volume = "69",
pages = "2302--2311",
journal = "Journal of Neurochemistry",
issn = "0022-3042",
publisher = "Wiley-Blackwell",
number = "6",

}

TY - JOUR

T1 - Nicotinic acetylcholine receptors of muscle and neuronal (α7) types coexpressed in a small cell lung carcinoma

AU - Sciamanna, Michele A.

AU - Griesmann, Guy E.

AU - Williams, Carol L.

AU - Lennon, Vanda A

PY - 1997/12

Y1 - 1997/12

N2 - SCC-37 is a small cell lung carcinoma line that aberrantly expresses muscle-type nicotinic acetylcholine receptors (nAChRs). It was established from a patient with a paraneoplastic autoimmune neuromuscular disorder, myasthenia gravis. When grown as a xenograft tumor, SCC-37 cells express plasma membrane receptors that bind 125I-labeled α-bungarotoxin (125I- α-BTx), cosediment with 9S nAChR pentamers, and bind to a monoclonal antibody (MAb 35) specific for muscle-type (α1 subunit) α-BTx receptors. The agonist carbamylcholine (carbachol) stimulates influx of 22Na+ in SCC- 37 cells; this is inhibited by α-BTx and by d-tubocurarine. Long-term cultured SCC-37 cells have functional and ligand-binding evidence for surface coexpression of both α1 and neuronal-type (α7 subunit) α-BTx receptors. A subclone of SCC-37, designated SCC-A9, expresses only the neuronal-type (α7 subunit) α-BTx receptors on its surface. Carbachol does not stimulate 22Na+ influx in SCC-A9 cells, but cytisine initiates a sustained influx of Ca2+. Activation of this response is inhibited by α-BTx and by the α7- selective antagonist methyllycaconitine. Addition of Co2+ abrogates the sustained elevation of intracellular free Ca2+ concentration, implying that the cytisine-stimulated influx of Ca2+ is sustained by secondary opening of voltage-sensitive channels in the plasma membrane. Surface receptors for 125I-α-BTx are blocked by methyllycaconitine and d-tubocurarine. Solubilized α-BTx receptors from plasma membranes of SCC-A9 cells cosediment with 10S neuronal nAChR pentamers and bind to an α7-specific monoclonal antibody (MAb P27) but not to the muscle nAChR-reactive MAb 35. However, MAb P27 and MAb 35 both bind to α-BTx receptors solubilized from the cytoplasmic compartments of SCC-A9 and the parental SCC-37 line. Reverse transcription- PCR analysis revealed RNA transcripts for α7 and α1 subunits in both SCC- A9 and SCC-37 cells. The nAChRs that are expressed in these novel human cell lines can regulate cation fluxes directly as well as indirectly by synergizing with the activity of voltage-sensitive Ca2+ channels. These activities may influence the secretion of autocrine growth factors and the transcription of growth regulatory genes and thus be pertinent to the growth and metastasis of malignant neuroendocrine neoplasms.

AB - SCC-37 is a small cell lung carcinoma line that aberrantly expresses muscle-type nicotinic acetylcholine receptors (nAChRs). It was established from a patient with a paraneoplastic autoimmune neuromuscular disorder, myasthenia gravis. When grown as a xenograft tumor, SCC-37 cells express plasma membrane receptors that bind 125I-labeled α-bungarotoxin (125I- α-BTx), cosediment with 9S nAChR pentamers, and bind to a monoclonal antibody (MAb 35) specific for muscle-type (α1 subunit) α-BTx receptors. The agonist carbamylcholine (carbachol) stimulates influx of 22Na+ in SCC- 37 cells; this is inhibited by α-BTx and by d-tubocurarine. Long-term cultured SCC-37 cells have functional and ligand-binding evidence for surface coexpression of both α1 and neuronal-type (α7 subunit) α-BTx receptors. A subclone of SCC-37, designated SCC-A9, expresses only the neuronal-type (α7 subunit) α-BTx receptors on its surface. Carbachol does not stimulate 22Na+ influx in SCC-A9 cells, but cytisine initiates a sustained influx of Ca2+. Activation of this response is inhibited by α-BTx and by the α7- selective antagonist methyllycaconitine. Addition of Co2+ abrogates the sustained elevation of intracellular free Ca2+ concentration, implying that the cytisine-stimulated influx of Ca2+ is sustained by secondary opening of voltage-sensitive channels in the plasma membrane. Surface receptors for 125I-α-BTx are blocked by methyllycaconitine and d-tubocurarine. Solubilized α-BTx receptors from plasma membranes of SCC-A9 cells cosediment with 10S neuronal nAChR pentamers and bind to an α7-specific monoclonal antibody (MAb P27) but not to the muscle nAChR-reactive MAb 35. However, MAb P27 and MAb 35 both bind to α-BTx receptors solubilized from the cytoplasmic compartments of SCC-A9 and the parental SCC-37 line. Reverse transcription- PCR analysis revealed RNA transcripts for α7 and α1 subunits in both SCC- A9 and SCC-37 cells. The nAChRs that are expressed in these novel human cell lines can regulate cation fluxes directly as well as indirectly by synergizing with the activity of voltage-sensitive Ca2+ channels. These activities may influence the secretion of autocrine growth factors and the transcription of growth regulatory genes and thus be pertinent to the growth and metastasis of malignant neuroendocrine neoplasms.

KW - α-Bungarotoxin receptors

KW - α subunit

KW - Myasthenia gravis

KW - Nicotinic acetylcholine receptor

UR - http://www.scopus.com/inward/record.url?scp=0030692732&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030692732&partnerID=8YFLogxK

M3 - Article

C2 - 9375661

AN - SCOPUS:0030692732

VL - 69

SP - 2302

EP - 2311

JO - Journal of Neurochemistry

JF - Journal of Neurochemistry

SN - 0022-3042

IS - 6

ER -